Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microalgae could be a profitable source of biodiesel

22.03.2013
Researchers at the UAB's Institute of Environmental Science and Technology (ICTA-UAB) and the Institute of Marine Sciences (ICM-CSIC), have analysed the potential of different species of microalgae for producing biodiesel, comparing their growth, production of biomass and the quantity of lipids per cell (essential for obtaining fuel).

Their study shows that one type of marine algae that has received little attention till now - dinoflagellate microalgae - is highly suitable for cultivation with the aim of producing biodiesel.

The scientists carried out the whole production process in exterior cultures, in natural conditions, without artificial light or temperature control, in cultivation conditions with low energy costs and subject to seasonal fluctuations. Detailed analysis of all costs over 4 years gives promising results: microalgae cultures are close to producing biodiesel profitably even in uncontrolled environmental conditions.

"If we make simple adjustments to completely optimise the process, biodiesel obtained by cultivating these marine microalgae could be an option for energy supplies to towns near the sea", points out Sergio Rossi, an ICTA researcher at the UAB.

Among these adjustments, scientists highlight the possibility of reusing leftover organic pulp (the glycerol and protein pulp that is not converted into biodiesel) and using air pumps and more efficient cultivation materials.

Though similar studies have been done on other alga species, dinoflagellate microalgae have shown themselves to be a very promising group that stands out from the rest. Moreover, these microalgae are autochthonous to the Mediterranean, so they would present no environmental threat in the event of leakage.

Third-generation biodiesel

First-generation biodiesel and bioethanol (obtained from monoculture of palm oil, sugar cane, maize, etc.) have presented problems that make them less attractive. The crops cover large areas of land and need huge amounts of fresh water, and their use implies diverting food products to the energy market.

The possibility of creating energy from hydrocarbons extracted from organisms like marine phytoplankton, the so-called third-generation biodiesel, has several advantages. Firstly, algae offer the same production levels while taking up only between 4 and 7 per cent of the area occupied by crops on land, thanks to their high concentration of energy per cell. Secondly, they do not need fresh water, as sea water is sufficient, which makes them viable even in deserts or arid areas near the coast. Finally, marine algae are not, a priori, sources of food for human consumption, which avoids the ethical problem of monoculture to provide fuel rather than food.

This study was led by scientists from the UAB's Institute of Environmental Science and Technology and involved researchers from the Department of Marine and Oceanographic Biology of the Institute of Marine Sciences of the CSIC, from the UAB spin-off Inèdit Innovació SL, in the UAB Research Park, and from the SOSTENIPRA research group, of the UAB's Department of Chemical Engineering.

Octavi López Coronado | EurekAlert!
Further information:
http://www.uab.cat

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>