Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method for Reporting Solar Data

12.01.2011
A straightforward new way to calculate, compile, and graphically present solar radiation measurements in a format that is accessible to decision makers and the general public has been developed by researchers at the University of Texas at Austin.

The method presents solar data in a framework that “can be used by policymakers, businesses, and the public to understand the magnitude of solar resources in a given region, which might aid consumers in selecting solar technologies, or policymakers in designing solar policies,” says David Wogan, a graduate student in mechanical engineering and public affairs at the University of Texas at Austin and the first author of a paper about the work in the American Institute of Physics' Journal of Renewable and Sustainable Energy.

Wogan’s coauthors on the paper are Michael E. Webber, an assistant professor of mechanical engineering and the associate director of the Center for International Energy and Environmental Policy, and Alexandre K. da Silva, an assistant professor of mechanical engineering.

The method uses calculated estimates of solar insolation—the amount of solar radiation incident on the earth’s surface—and the total energy in each of Texas’s 254 counties, and presents the data in a geographic information system (GIS) format. Included in the model are daily, monthly, and yearly averages. This allows the method to be used, for example, to estimate the potential amount of solar-generated electricity that could be produced at a given location, in a given month.

In the paper, the researchers use Texas to illustrate the new method, “because its geography is very diverse,” Wogan says, “but the framework is not limited to Texas and can be expanded to other states and countries to understand how renewable energy resources are distributed, both geographically and through time.”

The article, "A framework and methodology for reporting geographically and temporally resolved solar data: A case study of Texas" by David M. Wogan, Michael Webber, and Alexandre K. da Silva appears in the Journal of Renewable and Sustainable Energy. See: http://link.aip.org/link/jrsebh/v2/i5/p053107/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY
Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal published by the American Institute of Physics (AIP) that covers all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. As an electronic-only, Web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. See: http://jrse.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>