Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method could improve economics of sweetening natural gas

14.03.2011

ASSR could reduce amount of heat needed in purification process

Natural gas extracted from the nation's coal beds and methane-rich geologic features must first be purged of hydrogen sulfide before it can be used as fuel. Until now, processing methods have often proved to be inefficient, requiring large amounts of heat.

But a team of Battelle researchers at the Department of Energy's Pacific Northwest National Laboratory has discovered a method that could dramatically cut the amount of heat needed during processing, reducing the amount of energy needed during a key processing step by at least 10 percent. The research team believes the discovery could ultimately lead to a more cost-effective way of tapping into extremely "sour" natural gas reserves – those reserves that contain significant amounts of hydrogen sulfide and that may not have been economically viable to tap up to this point. Battelle operates the Pacific Northwest National Laboratory for DOE.

The researchers lay out the more efficient process and suggest how it could be applied to processing raw natural gas in the March 11 online issue of the journal Energy and Environmental Science.

Raw natural gas is purified in a process called "sweetening" before it can safely be used as a fuel. Thermal Swing Regeneration is a common industry process used for sweetening natural gas. In that process, chemical sponges called sorbents remove toxic and flammable gases, such as rotten-egg smelling hydrogen sulfide from natural gas.

The gas must first be treated with a solution of chemical sorbents that are dissolved in water. That solution must then be heated up and boiled to remove the hydrogen sulfide, in order to prepare the sorbent for future use. Once the hydrogen sulfide is boiled off, the sorbent is then cooled and ready for use again. The repeated heating and cooling requires a lot of energy and markedly reduces the efficiency of the process, scientists say.

The new, Battelle-created process called Antisolvent Swing Regeneration takes advantage of hydrogen sulfide's ability to dissolve better in some liquids than others at room temperatures. In this process, the hydrogen sulfide "swings" between different liquids during the processing at nearly room temperature, resulting in its removal, in just a few steps, from liquids that can be reused again and again.

"Because hydrogen sulfide is such a common contaminant in methane, natural gas processors could potentially use this method in the sweetening process, reducing their energy use and saving money on the cost of sorbent materials," said Phillip Koech, lead author and senior research scientist.

In the new work, Koech and colleagues tested how well they could swing hydrogen sulfide through a series of processing liquids without using water or heat. They began with a substance known as a recyclable binding organic liquid that could hold onto hydrogen sulfide without the addition of water.

First, they dissolved hydrogen sulfide in several different recyclable binding organic liquids and found that nearly all of them could hold the chemical without added water. They found one -- DMEA -- that could hold the most hydrogen sulfide. A chemical analysis suggested that hydrogen sulfide forms a salt with DMEA, turning the DMEA from an oily liquid into something more like salty water, but not water at all.

Based on the chemical characteristics of the salty DMEA, the team thought the salt could be easily disrupted and turned back into the gas hydrogen sulfide by adding a liquid hydrocarbon called an alkane. First, they mixed the hydrogen sulfide-containing DMEA with the alkane known as hexane and shook it like a bottle of salad dressing. Most of the hydrogen sulfide returned to its gaseous nature and bubbled out of the mix, leaving a soup of DMEA and hexane.

Having successfully removed the hydrogen sulfide from the DMEA, the team needed to find an alkane that would separate the hexane and the DMEA, and found one in hexadecane, which separates from DMEA in the same way that oil and vinegar drift apart in salad dressing. The team suggested the components separated due to a bit of salt left in the DMEA.

However, unlike hexane's ability to perform at room temperature, the team had to warm the DMEA-hexadecane just a little -- to about 40 degrees Celsius (104 degrees Fahrenheit), the temperature of a hot summer day -- to get the liquids to release the hydrogen sulfide. After the gas bubbled off and the two liquids separated, the team could pour off the hexadecane and re-use the left over DMEA.

Lastly, the researchers tested how well the chemicals could be re-used by recycling the hydrogen sulfide through the DMEA and hexadecane five times. The liquids retained their ability to remove the hydrogen sulfide and recover the DMEA in its initial form. The team expects DMEA will be able to pull hydrogen sulfide from natural gas using this process and they expect to scale up the process with future research.

This chemical process, called a polarity swing, occurs naturally at nearly room temperature, drastically reducing the need for heat during sweetening. Scientists estimate this method could cut the amount of energy needed to complete the sweetening process by at least 10 percent.

In addition to energy savings, scientists say there are other potential benefits of using Antisolvent Swing Regeneration.

"Applying ASSR to natural gas sweetening could result in a more environmentally friendly process because hexadecane is non-toxic," said David Heldebrant, corresponding author and project manager.

"We also anticipate chemical sorbents could last longer because they are not subjected to repeated heating and cooling, which degrade the sorbent."

Battelle's Independent Research and Development fund supported this work. Patents are pending on this technology and it is now available for licensing worldwide.

Reference: Phillip K. Koech, James E. Rainbolt, Mark D. Bearden, Feng Zheng, David J. Heldebrant, Chemically Selective Gas Sweetening Without Thermal-Swing Regeneration, Energy Environ. Sci., doi: 10.1039/c0ee00839g <http://blogs.rsc.org/ee>

About Battelle

As the world's largest, independent research and development organization, Battelle provides innovative solutions to the world's most pressing needs through its four global businesses: Laboratory Management; National Security; Health and Life Sciences; and Energy, Environment and Material Sciences. It advances scientific discovery and application by conducting $6.5 billion in global R&D annually through contract research, laboratory management and technology commercialization.

About PNNL

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, the environment and national security. PNNL employs 4,900 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Anne M. Haas | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>