Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for estimating thermal comfort in low-energy buildings at the design stage

18.12.2012
Indoor environments that are too hot, too cold or draughty create discomfort and lower human productivity. MSc (Tech) Riikka Holopainen from VTT Technical Research Centre of Finland, has written a doctoral thesis on a new method for estimating the actual level of human thermal comfort in low-energy buildings.

The method is also the first of its kind to be integrated with a building simulation tool. Factoring in the different ways in which buildings are used and the different kinds of people using them at the design stage can help to improve energy efficiency and human comfort.

Energy-efficient passive and zero-energy buildings require considerably less heating than traditional buildings. Traditional HVAC solutions are therefore no longer suitable for designing indoor environments for low-energy buildings.

The Human Thermal Model (HTM) is a new technique developed by Senior Scientist Riikka Holopainen from VTT in her doctoral thesis, which can be used to design and create optimal indoor environments for low-energy buildings. One of the novelties of the method is the fact that it allows scientists to measure how different solutions are likely to affect human thermal comfort and the energy efficiency of buildings at the design stage.

The model is based on the physiological thermal control system of the human body, and it can be used to calculate the actual level of human thermal comfort in both steady-state and transient thermal environments. The thesis introduces the first ever mathematical application that integrates a building simulation tool with human thermal sensation. The model also produces information about previously complex comparisons, such as the effects of different structural solutions and HVAC systems on human thermal sensation.

Earlier models for measuring the comfort of indoor environments have not taken account of the human body’s own thermal control system. These methods are also insufficient for designing passive and zero-energy buildings. Models based on laboratory measurements, for example, overestimate the heat perceived by humans in warm conditions and underestimate it in cool conditions. They also factor in clothing as a hermetically sealed unit similar to a diving suit.

Both internal and external factors affect human thermal sensation. Internal factors include personal characteristics, anatomy, activity level, whether work is physical, and clothing. External factors include room temperature, which covers air and surface temperature, as well as air velocity and relative humidity. Holopainen has demonstrated that the most important factors contributing to thermal sensation and comfort are air and surface temperature, activity level and clothing.

Ensuring building optimisation and human comfort at the design stage
Indoor environments that are too hot, too cold or draughty create discomfort and lower human productivity. Bed-bound patients in hospitals, for example, spend a great deal of time lying still and therefore need a sufficiently warm indoor environment and bedclothes. Checkout operators in shops, on the other hand, may have to sit in heat in summer and in cold and draughts in winter. Factoring in the different ways in which buildings are used and the different kinds of people using them at the design stage can help to optimise indoor environments and improve human comfort. Employees can also be given clothing advice.

The Human Thermal Model is suitable for both new builds and renovations. Engineering firms and the construction industry can now develop their products to better meet the needs of different buildings and users.

In the future, the HTM and building automation systems will work together to automatically regulate ventilation, heating and cooling according to actual needs, incorporating human thermal comfort as an integral aspect of workplace productivity enhancement.

The doctoral thesis ‘A human thermal model for improved thermal comfort’ is available online at http://www.vtt.fi/inf/pdf/science/2012/S23.pdf .

For more information, please contact:
VTT Technical Research Centre of Finland
Riikka Holopainen
Senior Scientist
Tel. +358 40 571 0364
riikka.holopainen@vtt.fi
Further information on VTT:
Sakari Sohlberg, Manager, External Communications
Tel. 358 20 722 6744
sakari.sohlberg@vtt.fi
VTT - 70 years of technology for business and society
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and itspersonnel totals 3,100.

Sakari Sohlberg | VTT Info
Further information:
http://www.vtt.fi

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>