Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for estimating thermal comfort in low-energy buildings at the design stage

18.12.2012
Indoor environments that are too hot, too cold or draughty create discomfort and lower human productivity. MSc (Tech) Riikka Holopainen from VTT Technical Research Centre of Finland, has written a doctoral thesis on a new method for estimating the actual level of human thermal comfort in low-energy buildings.

The method is also the first of its kind to be integrated with a building simulation tool. Factoring in the different ways in which buildings are used and the different kinds of people using them at the design stage can help to improve energy efficiency and human comfort.

Energy-efficient passive and zero-energy buildings require considerably less heating than traditional buildings. Traditional HVAC solutions are therefore no longer suitable for designing indoor environments for low-energy buildings.

The Human Thermal Model (HTM) is a new technique developed by Senior Scientist Riikka Holopainen from VTT in her doctoral thesis, which can be used to design and create optimal indoor environments for low-energy buildings. One of the novelties of the method is the fact that it allows scientists to measure how different solutions are likely to affect human thermal comfort and the energy efficiency of buildings at the design stage.

The model is based on the physiological thermal control system of the human body, and it can be used to calculate the actual level of human thermal comfort in both steady-state and transient thermal environments. The thesis introduces the first ever mathematical application that integrates a building simulation tool with human thermal sensation. The model also produces information about previously complex comparisons, such as the effects of different structural solutions and HVAC systems on human thermal sensation.

Earlier models for measuring the comfort of indoor environments have not taken account of the human body’s own thermal control system. These methods are also insufficient for designing passive and zero-energy buildings. Models based on laboratory measurements, for example, overestimate the heat perceived by humans in warm conditions and underestimate it in cool conditions. They also factor in clothing as a hermetically sealed unit similar to a diving suit.

Both internal and external factors affect human thermal sensation. Internal factors include personal characteristics, anatomy, activity level, whether work is physical, and clothing. External factors include room temperature, which covers air and surface temperature, as well as air velocity and relative humidity. Holopainen has demonstrated that the most important factors contributing to thermal sensation and comfort are air and surface temperature, activity level and clothing.

Ensuring building optimisation and human comfort at the design stage
Indoor environments that are too hot, too cold or draughty create discomfort and lower human productivity. Bed-bound patients in hospitals, for example, spend a great deal of time lying still and therefore need a sufficiently warm indoor environment and bedclothes. Checkout operators in shops, on the other hand, may have to sit in heat in summer and in cold and draughts in winter. Factoring in the different ways in which buildings are used and the different kinds of people using them at the design stage can help to optimise indoor environments and improve human comfort. Employees can also be given clothing advice.

The Human Thermal Model is suitable for both new builds and renovations. Engineering firms and the construction industry can now develop their products to better meet the needs of different buildings and users.

In the future, the HTM and building automation systems will work together to automatically regulate ventilation, heating and cooling according to actual needs, incorporating human thermal comfort as an integral aspect of workplace productivity enhancement.

The doctoral thesis ‘A human thermal model for improved thermal comfort’ is available online at http://www.vtt.fi/inf/pdf/science/2012/S23.pdf .

For more information, please contact:
VTT Technical Research Centre of Finland
Riikka Holopainen
Senior Scientist
Tel. +358 40 571 0364
riikka.holopainen@vtt.fi
Further information on VTT:
Sakari Sohlberg, Manager, External Communications
Tel. 358 20 722 6744
sakari.sohlberg@vtt.fi
VTT - 70 years of technology for business and society
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and itspersonnel totals 3,100.

Sakari Sohlberg | VTT Info
Further information:
http://www.vtt.fi

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>