Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metamaterial uses light to control its motion

11.10.2016

Researchers have designed a device that uses light to manipulate its mechanical properties. The device, which was fabricated using a plasmomechanical metamaterial, operates through a unique mechanism that couples its optical and mechanical resonances, enabling it to oscillate indefinitely using energy absorbed from light.

This work demonstrates a metamaterial-based approach to develop an optically-driven mechanical oscillator. The device can potentially be used as a new frequency reference to accurately keep time in GPS, computers, wristwatches and other devices, researchers said. Other potential applications that could be derived from this metamaterial-based platform include high precision sensors and quantum transducers. The research was published Oct. 10 in the journal Nature Photonics.


This is an optically-driven mechanical oscillator fabricated using a plasmomechanical metamaterial.

Credit: UC San Diego Jacobs School of Engineering

Researchers engineered the metamaterial-based device by integrating tiny light absorbing nanoantennas onto nanomechanical oscillators. The study was led by Ertugrul Cubukcu, a professor of nanoengineering and electrical engineering at the University of California San Diego. The work, which Cubukcu started as a faculty member at the University of Pennsylvania and is continuing at the Jacobs School of Engineering at UC San Diego, demonstrates how efficient light-matter interactions can be utilized for applications in novel nanoscale devices.

Metamaterials are artificial materials that are engineered to exhibit exotic properties not found in nature. For example, metamaterials can be designed to manipulate light, sound and heat waves in ways that can't typically be done with conventional materials.

Metamaterials are generally considered "lossy" because their metal components absorb light very efficiently. "The lossy trait of metamaterials is considered a nuisance in photonics applications and telecommunications systems, where you have to transmit a lot of power. We're presenting a unique metamaterials approach by taking advantage of this lossy feature," Cubukcu said.

The device in this study resembles a tiny capacitor--roughly the size of a quarter--consisting of two square plates measuring 500 microns by 500 microns. The top plate is a bilayer gold/silicon nitride membrane containing an array of cross-shaped slits--the nanoantennas--etched into the gold layer. The bottom plate is a metal reflector that is separated from the gold/silicon nitride bilayer by a three-micron-wide air gap.

When light is shined upon the device, the nanoantennas absorb all of the incoming radiation from light and convert that optical energy into heat. In response, the gold/silicon nitride bilayer bends because gold expands more than silicon nitride when heated. The bending of the bilayer alters the width of the air gap separating it from the metal reflector. This change in spacing causes the bilayer to absorb less light and as a result, the bilayer bends back to its original position. The bilayer can once again absorb all of the incoming light and the cycle repeats over and over again.

The device relies on a unique hybrid optical resonance known as the Fano resonance, which emerges as a result of the coupling between two distinct optical resonances of the metamaterial. The optical resonance can be tuned "at will" by applying a voltage.

The researchers also point out that because the plasmomechanical metamaterial can efficiently absorb light, it can function under a broad optical resonance. That means this metamaterial can potentially respond to a light source like an LED and won't need a strong laser to provide the energy.

"Using plasmonic metamaterials, we were able to design and fabricate a device that can utilize light to amplify or dampen microscopic mechanical motion more powerfully than other devices that demonstrate these effects. Even a non-laser light source could still work on this device," said Hai Zhu, a former graduate student in Cubukcu's lab and first author of the study.

"Optical metamaterials enable the chip-level integration of functionalities such as light-focusing, spectral selectivity and polarization control that are usually performed by conventional optical components such as lenses, optical filters and polarizers. Our particular metamaterial-based approach can extend these effects across the electromagnetic spectrum," said Fei Yi, a postdoctoral researcher who worked in Cubukcu's lab.

###

Full paper: "Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances." Authors of the study are: Hai Zhu and Fei Yi, University of Pennsylvania; and Ertugrul Cubukcu, UC San Diego.

This work was supported by the National Science Foundation Electrical, Communications and Cyber Systems division (grant ECCS-1632797).

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>