Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal Particle Generates New Hope for H2 Energy

29.06.2011
Tiny metallic particles produced by University of Adelaide chemistry researchers are bringing new hope for the production of cheap, efficient and clean hydrogen energy.

Led by Associate Professor Greg Metha, Head of Chemistry, the researchers are exploring how the metal nanoparticles act as highly efficient catalysts in using solar radiation to split water into hydrogen and oxygen.

“Efficient and direct production of hydrogen from solar radiation provides a renewable energy source that is the pinnacle of clean energy,” said Associate Professor Greg Metha. “We believe this work will contribute significantly to the global effort to convert solar energy into portable chemical energy.”

The latest research is the outcome of 14 years of fundamental research by Associate Professor Metha’s research group investigating the synthesis and properties of metal nanoparticles and how they work as catalysts at the molecular level.

The group works with metal “clusters” of about one-quarter of a nanometre in size – less than 10 atoms. Associate Professor Metha said these tiny “magic clusters” act as super-efficient catalysts. Catalysts drive chemical reactions, reducing the amount of energy required.

“We’ve discovered ways of producing these tiny metallic clusters, we’ve explored their fundamental chemical activity, and now we are applying their catalytic properties to reactions which have great potential benefit for industrial use and the environment,” said Associate Professor Metha.

PhD student Jason Alvino is exploring splitting water to make hydrogen (and oxygen) using solar energy – a process that is not viable for industry development at the moment.

“We know this catalysis works very efficiently at the molecular level and now need to demonstrate it works on the macroscopic scale,” said Associate Professor Metha.

“Splitting water to make hydrogen and oxygen requires a lot of energy and is an expensive process. We will be using solar radiation as the energy source, so there will be no carbon emissions and because the clusters work so efficiently as a catalyst, it will be a much better process.

“The ultimate aim is to produce hydrogen from water as a cheap portable energy source.”

Associate Professor Metha said there were also other industrial chemical reactions that could be made feasible by these catalysts, using solar radiation as the energy source - with potentially significant environmental benefits. One example was converting carbon dioxide into methane or methanol with water.

This project ‘Solar Hydrogen: photocatalytic generation of hydrogen from water’, has been funded under the three-year clean energy partnership between Adelaide Airport Ltd and the University’s Centre for Energy Technology.

Media Contact:
Associate Professor Greg Metha
Head of Chemistry,
School of Chemistry & Physics
The University of Adelaide
Phone: +61 8 8303 5943
Mobile: +61 419 663 287
greg.metha@adelaide.edu.au
Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8303 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>