Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal nanoparticles shine with customizable color

24.02.2012
A new way to create and control color has implications for display screens and security tags

Engineers at Harvard have demonstrated a new kind of tunable color filter that uses optical nanoantennas to obtain precise control of color output.


The color output of a new type of optical filter created at Harvard depends on the polarization of the incoming light. Credit: Image courtesy of Tal Ellenbogen.

Whereas a conventional color filter can only produce one fixed color, a single active filter under exposure to different types of light can produce a range of colors.

The advance has the potential for application in televisions and biological imaging, and could even be used to create invisible security tags to mark currency. The findings appear in the February issue of Nano Letters.

Kenneth Crozier, Associate Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS), and colleagues have engineered the size and shape of metal nanoparticles so that the color they appear strongly depends on the polarization of the light illuminating them. The nanoparticles can be regarded as antennas—similar to antennas used for wireless communications—but much smaller in scale and operating at visible frequencies.

"With the advances in nanotechnology, we can precisely control the shape of the optical nanoantennas, so we can tune them to react differently with light of different colors and different polarizations," said co-author Tal Ellenbogen, a postdoctoral fellow at SEAS. "By doing so, we designed a new sort of controllable color filter."

Conventional RGB filters used to create color in today's televisions and monitors have one fixed output color (red, green, or blue) and create a broader palette of hues through blending. By contrast, each pixel of the nanoantenna-based filters is dynamic and able to produce different colors when the polarization is changed.

The researchers dubbed these filters "chromatic plasmonic polarizers" as they can create a pixel with a uniform color or complex patterns with colors varying as a function of position.

To demonstrate the technology's capabilities, the acronym LSP (short for localized surface plasmon) was created. With unpolarized light or with light which is polarized at 45 degrees, the letters are invisible (gray on gray). In polarized light at 90 degrees, the letters appear vibrant yellow with a blue background, and at 0 degrees the color scheme is reversed. By rotating the polarization of the incident light, the letters then change color, moving from yellow to blue.

"What is somewhat unusual about this work is that we have a color filter with a response that depends on polarization," says Crozier.

The researchers envision several kinds of applications: using the color functionality to present different colors in a display or camera, showing polarization effects in tissue for biomedical imaging, and integrating the technology into labels or paper to generate security tags that could mark money and other objects.

Seeing the color effects from current fabricated samples requires magnification, but large-scale nanoprinting techniques could be used to generate samples big enough to be seen with the naked eye. To build a television, for example, using the nanoantennas would require a great deal of advanced engineering, but Crozier and Ellenbogen say it is absolutely feasible.

Crozier credits the latest advance, in part, to taking a biological approach to the problem of color generation. Ellenbogen, who is, ironically, colorblind, had previously studied computational models of the visual cortex and brought such knowledge to the lab.

"The chromatic plasmonic polarizers combine two structures, each with a different spectral response, and the human eye can see the mixing of these two spectral responses as color," said Crozier.

"We would normally ask what is the response in terms of the spectrum, rather than what is the response in terms of the eye," added Ellenbogen.

The researchers have filed a provisional patent for their work.

Kwanyong Seo, a postdoctoral fellow in electrical engineering at SEAS, also contributed to the research. The work was supported by the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; and Zena Technologies. In addition, the research team acknowledges the Center for Nanoscale Systems at Harvard for fabrication work.

Caroline Perry | EurekAlert!
Further information:
http://www.seas.harvard.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>