Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanin's 'trick' for maintaining radioprotection studied

24.08.2011
Sunbathers have long known that melanin in their skin cells provides protection from the damage caused by visible and ultraviolet light.

More recent studies have shown that melanin, which is produced by multitudes of the planet's life forms, also gives some species protection from ionizing radiation. In certain microbes, in particular some organisms from near the former nuclear reactor facilities in Chernobyl, melanin has even been linked to increased growth in the presence of ionizing radiation.

Research at the U.S. Department of Energy's Savannah River National Laboratory, in collaboration with the Albert Einstein College of Medicine, has provided insights into the electrochemical mechanism that gives the complex polymer known as melanin its long-term radioprotective properties, with a goal of using that knowledge to develop materials that mimic those natural properties.

A recent article in the journal Bioelectrochemistry (Bioelectrochemistry 82 (2011) 69-73) relates how the researchers established that ionizing radiation interacts with melanin to alter its oxidation-reduction potential, resulting in electric current production.

Radiation causes damage by stripping away electrons from its target. "Over time, as melanin is bombarded with radiation and electrons are knocked away, you would expect to see the melanin become oxidized, or bleached out, and lose its ability to provide protection," said Dr. Charles Turick, Science Fellow with SRNL, "but that's not what we're seeing. Instead, the melanin continuously restores itself."

The team's research took them one step closer to understanding that self-restoration mechanism. They demonstrated that melanin can receive electrons, countering the oxidizing effects of the gamma radiation. The work showed, for the first time, that constant exposure of melanin to gamma radiation results in electric current production.

Mimicking that ability would be useful, for example, in the space industry, where satellites and other equipment are exposed to high levels of radiation for long spans of time. "Looking at materials, a constantly gamma radiation-oxidized electrode consisting in part of melanin would continuously accept electrons, thereby resulting in a current response," Turick said. "If we could understand how that works, we could keep that equipment working for a very long time."

SRNL is DOE's Office of Environmental Management's national laboratory at SRS. SRNL puts science to work to support DOE and the nation in the areas of environmental management, national and homeland security, and clean energy. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC.

Angeline (Angie) French | EurekAlert!
Further information:
http://www.srnl.doe.gov

More articles from Power and Electrical Engineering:

nachricht Heavy metals in water meet their match
28.07.2017 | Swansea University

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>