Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanin's 'trick' for maintaining radioprotection studied

24.08.2011
Sunbathers have long known that melanin in their skin cells provides protection from the damage caused by visible and ultraviolet light.

More recent studies have shown that melanin, which is produced by multitudes of the planet's life forms, also gives some species protection from ionizing radiation. In certain microbes, in particular some organisms from near the former nuclear reactor facilities in Chernobyl, melanin has even been linked to increased growth in the presence of ionizing radiation.

Research at the U.S. Department of Energy's Savannah River National Laboratory, in collaboration with the Albert Einstein College of Medicine, has provided insights into the electrochemical mechanism that gives the complex polymer known as melanin its long-term radioprotective properties, with a goal of using that knowledge to develop materials that mimic those natural properties.

A recent article in the journal Bioelectrochemistry (Bioelectrochemistry 82 (2011) 69-73) relates how the researchers established that ionizing radiation interacts with melanin to alter its oxidation-reduction potential, resulting in electric current production.

Radiation causes damage by stripping away electrons from its target. "Over time, as melanin is bombarded with radiation and electrons are knocked away, you would expect to see the melanin become oxidized, or bleached out, and lose its ability to provide protection," said Dr. Charles Turick, Science Fellow with SRNL, "but that's not what we're seeing. Instead, the melanin continuously restores itself."

The team's research took them one step closer to understanding that self-restoration mechanism. They demonstrated that melanin can receive electrons, countering the oxidizing effects of the gamma radiation. The work showed, for the first time, that constant exposure of melanin to gamma radiation results in electric current production.

Mimicking that ability would be useful, for example, in the space industry, where satellites and other equipment are exposed to high levels of radiation for long spans of time. "Looking at materials, a constantly gamma radiation-oxidized electrode consisting in part of melanin would continuously accept electrons, thereby resulting in a current response," Turick said. "If we could understand how that works, we could keep that equipment working for a very long time."

SRNL is DOE's Office of Environmental Management's national laboratory at SRS. SRNL puts science to work to support DOE and the nation in the areas of environmental management, national and homeland security, and clean energy. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC.

Angeline (Angie) French | EurekAlert!
Further information:
http://www.srnl.doe.gov

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>