Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanin's 'trick' for maintaining radioprotection studied

24.08.2011
Sunbathers have long known that melanin in their skin cells provides protection from the damage caused by visible and ultraviolet light.

More recent studies have shown that melanin, which is produced by multitudes of the planet's life forms, also gives some species protection from ionizing radiation. In certain microbes, in particular some organisms from near the former nuclear reactor facilities in Chernobyl, melanin has even been linked to increased growth in the presence of ionizing radiation.

Research at the U.S. Department of Energy's Savannah River National Laboratory, in collaboration with the Albert Einstein College of Medicine, has provided insights into the electrochemical mechanism that gives the complex polymer known as melanin its long-term radioprotective properties, with a goal of using that knowledge to develop materials that mimic those natural properties.

A recent article in the journal Bioelectrochemistry (Bioelectrochemistry 82 (2011) 69-73) relates how the researchers established that ionizing radiation interacts with melanin to alter its oxidation-reduction potential, resulting in electric current production.

Radiation causes damage by stripping away electrons from its target. "Over time, as melanin is bombarded with radiation and electrons are knocked away, you would expect to see the melanin become oxidized, or bleached out, and lose its ability to provide protection," said Dr. Charles Turick, Science Fellow with SRNL, "but that's not what we're seeing. Instead, the melanin continuously restores itself."

The team's research took them one step closer to understanding that self-restoration mechanism. They demonstrated that melanin can receive electrons, countering the oxidizing effects of the gamma radiation. The work showed, for the first time, that constant exposure of melanin to gamma radiation results in electric current production.

Mimicking that ability would be useful, for example, in the space industry, where satellites and other equipment are exposed to high levels of radiation for long spans of time. "Looking at materials, a constantly gamma radiation-oxidized electrode consisting in part of melanin would continuously accept electrons, thereby resulting in a current response," Turick said. "If we could understand how that works, we could keep that equipment working for a very long time."

SRNL is DOE's Office of Environmental Management's national laboratory at SRS. SRNL puts science to work to support DOE and the nation in the areas of environmental management, national and homeland security, and clean energy. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC.

Angeline (Angie) French | EurekAlert!
Further information:
http://www.srnl.doe.gov

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>