Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism for superconductivity discovered in iron-based superconductors

23.04.2010
A research team at RIKEN, Japan’s flagship research organisation has experimentally determined the mechanism underlying the formation of electron pairs in iron-based high-temperature superconductors. The landmark finding, reported in the April 23rd issue of Science, establishes a key role for magnetism in superconductivity.

In classical theory, superconductivity occurs when two electrons are bound together to form a pair, known as a Cooper pair, by lattice vibrations. This pairing mechanism, however, has never been confirmed for high-temperature superconductors, whose transition temperatures well above the theoretical limit of about 40 K pose an enigma for condensed matter physics.

The iron-based superconductors investigated by the research team, first discovered in 2008 by Japanese researchers, offer the greatest chance of solving this enigma. With a maximum transition temperature of 55K, these superconductors are governed by an electron pairing mechanism that is different from earlier superconductors mediated by lattice vibrations, one based on two types of electrons with different momenta.

To analyze this complex pairing mechanism, the researchers applied scanning tunnelling microscopy to electron pairing in Fe(Se, Te), the iron-based superconductor with the simplest crystal structure. Imaging electronic standing waves produced by scattering interference under a powerful 10-Tesla magnetic field, they found that Cooper pairs adopted a characteristic “s±-wave” structure that is unique to a material with two types of electrons.

The discovery of s±-wave structure breaks new ground by supporting a mechanism for electron pairing based not on lattice vibrations, as in other forms of superconductivity, but on magnetism. In providing a powerful constraint on theoretical models, the finding thus marks a major advance toward unraveling the mystery of high-temperature superconductivity.

For more information, please contact:

Dr. Tetsuo Hanaguri
Magnetic Materials Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-5428 / Fax: +81-(0)48-462-4649
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

ABOUT RIKEN
RIKEN, Japan’s flagship research organization, conducts basic and applied experimental research in a wide range of science and technology fields including physics, chemistry, medical science, biology and engineering.

Magdeline Pokar | Research asia research news
Further information:
http://www.riken.jp/

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>