Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism for superconductivity discovered in iron-based superconductors

23.04.2010
A research team at RIKEN, Japan’s flagship research organisation has experimentally determined the mechanism underlying the formation of electron pairs in iron-based high-temperature superconductors. The landmark finding, reported in the April 23rd issue of Science, establishes a key role for magnetism in superconductivity.

In classical theory, superconductivity occurs when two electrons are bound together to form a pair, known as a Cooper pair, by lattice vibrations. This pairing mechanism, however, has never been confirmed for high-temperature superconductors, whose transition temperatures well above the theoretical limit of about 40 K pose an enigma for condensed matter physics.

The iron-based superconductors investigated by the research team, first discovered in 2008 by Japanese researchers, offer the greatest chance of solving this enigma. With a maximum transition temperature of 55K, these superconductors are governed by an electron pairing mechanism that is different from earlier superconductors mediated by lattice vibrations, one based on two types of electrons with different momenta.

To analyze this complex pairing mechanism, the researchers applied scanning tunnelling microscopy to electron pairing in Fe(Se, Te), the iron-based superconductor with the simplest crystal structure. Imaging electronic standing waves produced by scattering interference under a powerful 10-Tesla magnetic field, they found that Cooper pairs adopted a characteristic “s±-wave” structure that is unique to a material with two types of electrons.

The discovery of s±-wave structure breaks new ground by supporting a mechanism for electron pairing based not on lattice vibrations, as in other forms of superconductivity, but on magnetism. In providing a powerful constraint on theoretical models, the finding thus marks a major advance toward unraveling the mystery of high-temperature superconductivity.

For more information, please contact:

Dr. Tetsuo Hanaguri
Magnetic Materials Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-5428 / Fax: +81-(0)48-462-4649
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

ABOUT RIKEN
RIKEN, Japan’s flagship research organization, conducts basic and applied experimental research in a wide range of science and technology fields including physics, chemistry, medical science, biology and engineering.

Magdeline Pokar | Research asia research news
Further information:
http://www.riken.jp/

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>