Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism to produce energy from biomass

15.09.2008
Scientists from the Carlos III University of Madrid (UC3M) have developed a system that can improve the efficiency of the conversion process of biomass to fuel gas that will contribute to the production of energy in a more sustainable manner.

One of the challenges that chemical engineers face is placing solid materials in contact with gases to generate certain reactions. One of the options is to use a fluidised bed, consisting of a vertical cylinder with a perforated plate inside where solid particles are introduced using pressurised air.

This way, the solid particles are suspended, and behave much like boiling water. Solids behaving like a liquid depend on the speed of the air stream, making it key to achieving the desired behaviour. With insufficient air, the particles don’t move, but with too much the opposite happens, and they are carried away by the air stream.

Fluidised beds have relevant environmental applications because they allow the gasification of biomass to produce energy. That is, producing fuel gas from crushed biomass which can then be used for energy production. According to one of the authors of the study, Mercedes de Vega from the Energy System Engineering Group of the department of Thermal and Fluid Engineering of the UC3M, using fluidised beds as chemical reactors allows for a more efficient conversion by achieving high mixing degrees and high exchange rates of mass and heat.

This renewable source has great potential in Spain, especially in processes of co-combustion, direct combustion, and gasification. The applications are mainly industrial, open to be used in motors for the production of electricity, in gas turbines, drying processes, as well as in the pharmaceutical industry for the treatment of powder.

Greater efficiency

The study analyses the behaviour of a new bed designed with a rotating base. The base consists of a perforated plate where holes represent just 1% of its total area. The study evaluates the performance of this new design, considering the increase in pressure and the quality of the fluidisation. It also analyses the effect of the rotation speed of the perforated plate on the performance of the fluidised bed. This type of beds can usually present problems such as agglomeration of solid particles and points of high temperature. But one of the most important conclusions determined that the rotating perforated plate reduces these problems by maintaining a very uniform fluidisation.

The researchers now propose, for future investigations, to study different rotation speeds over a hundred revolutions per minute, and to alter the configuration of the holes in the plate. Celia Sobrino, author of the study, states that the new rotating distribution plate produces smaller bubbles inside the fluidised bed and distributes them better, while improving the efficiency of the conversion in gasification applications.

The study ‘Fluidization of Group B particles with a rotating distributor’ carried out by the Energy System Engineering Group of the department of Thermal and Fluid Engineering of the Carlos III University of Madrid has been published in the journal Powder technology.

Oficina de Información Científic | alfa
Further information:
http://www.uc3m.es

Further reports about: Biomass UC3M air stream chemical reactors gas turbines vertical cylinder

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>