Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism to produce energy from biomass

15.09.2008
Scientists from the Carlos III University of Madrid (UC3M) have developed a system that can improve the efficiency of the conversion process of biomass to fuel gas that will contribute to the production of energy in a more sustainable manner.

One of the challenges that chemical engineers face is placing solid materials in contact with gases to generate certain reactions. One of the options is to use a fluidised bed, consisting of a vertical cylinder with a perforated plate inside where solid particles are introduced using pressurised air.

This way, the solid particles are suspended, and behave much like boiling water. Solids behaving like a liquid depend on the speed of the air stream, making it key to achieving the desired behaviour. With insufficient air, the particles don’t move, but with too much the opposite happens, and they are carried away by the air stream.

Fluidised beds have relevant environmental applications because they allow the gasification of biomass to produce energy. That is, producing fuel gas from crushed biomass which can then be used for energy production. According to one of the authors of the study, Mercedes de Vega from the Energy System Engineering Group of the department of Thermal and Fluid Engineering of the UC3M, using fluidised beds as chemical reactors allows for a more efficient conversion by achieving high mixing degrees and high exchange rates of mass and heat.

This renewable source has great potential in Spain, especially in processes of co-combustion, direct combustion, and gasification. The applications are mainly industrial, open to be used in motors for the production of electricity, in gas turbines, drying processes, as well as in the pharmaceutical industry for the treatment of powder.

Greater efficiency

The study analyses the behaviour of a new bed designed with a rotating base. The base consists of a perforated plate where holes represent just 1% of its total area. The study evaluates the performance of this new design, considering the increase in pressure and the quality of the fluidisation. It also analyses the effect of the rotation speed of the perforated plate on the performance of the fluidised bed. This type of beds can usually present problems such as agglomeration of solid particles and points of high temperature. But one of the most important conclusions determined that the rotating perforated plate reduces these problems by maintaining a very uniform fluidisation.

The researchers now propose, for future investigations, to study different rotation speeds over a hundred revolutions per minute, and to alter the configuration of the holes in the plate. Celia Sobrino, author of the study, states that the new rotating distribution plate produces smaller bubbles inside the fluidised bed and distributes them better, while improving the efficiency of the conversion in gasification applications.

The study ‘Fluidization of Group B particles with a rotating distributor’ carried out by the Energy System Engineering Group of the department of Thermal and Fluid Engineering of the Carlos III University of Madrid has been published in the journal Powder technology.

Oficina de Información Científic | alfa
Further information:
http://www.uc3m.es

Further reports about: Biomass UC3M air stream chemical reactors gas turbines vertical cylinder

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>