Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Nanowires More Electrically Stable

21.09.2009
It's widely predicted that future electronics will largely depend on something really small -- nanomaterials used for building nanoelectronics. A key component of these tiny circuits is stable nanowires that work reliably for a decade or more. Currently, however, nanowires often fail after anywhere from a few days to a few months, due to prolonged electrical stressing.

Carmen Lilley, assistant professor of mechanical and industrial engineering at the University of Illinois at Chicago, is working on new procedures for making nanowires more electrically stable -- and hence more reliable. She was recently awarded a $505,532 National Science Foundation Faculty Early Career Award to help advance her project.

"My idea is to look at the physics of failure," she said. "How do these systems fail when stressed electrically? If we can develop a basic understanding of the mechanisms that control failure and a way to model these mechanisms, we can create material designs with predictable behavior."

Lilley's research focuses on studying properties of single crystals of common conductor metals such as gold, silver, copper, nickel and iron, and their unusual behavior characteristics at the nanoscale.

"At these smaller scales, the electrical resistivity of the structure changes," she said. "Single crystalline materials are of interest because we can use them to control the material uncertainties that influence typical experiments such as isolating electrical resistivity measurements from grain boundary effects, surface contaminant and roughness effects. What is the basic electrical resistivity at different sizes within the nanoscale?"

Lilley's goal is to create a basic design scheme to build stable nanowires for any application. For future highly integrated circuits and nanoelectronics, nanowires are the "essential building block," she said. "But to be successful, they must be stable, and that's a considerable challenge."

Lilley plans to use part of her grant to continue an ongoing effort to attract underrepresented minorities to engineering careers. One effort is the launch of a graduate mentoring program called "Preparing for Academic Careers in Engineering," or PACE. This program is sponsored by Women in Science and Engineering, the UIC College of Engineering and the department of mechanical and industrial engineering.

She also hopes to give undergraduate assistants more hands-on laboratory experience, and to bring students from Chicago Public Schools to UIC to see work in the lab and view some of the breathtaking images produced by instruments such as scanning electron microscopes.

"These beautiful images often have artwork properties. For the visiting kids, it can spark an interest."

NSF’s Faculty Early Career Development award is its most prestigious honor given to junior faculty members in the sciences and engineering who have shown a demonstrated commitment to research and engineering. Lilley's award is funded under the federal government's economic stimulus plan, the American Recovery and Reinvestment Act of 2009.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>