Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making it easier to save energy

15.01.2010
Fraunhofer scientists are developing programs that help show at a glance how much energy devices are consuming. At the GSMA Mobile World Congress in Barcelona, the researchers will be showing how a cell phone can help save energy (Hall 2, Stand E41).

Everyone wants to save energy, but there are few individuals who can tell you exactly how much energy the devices in their homes consume. For example, which consumes more power – the dishwasher or the television?

To answer such questions and to give consumers a sense of where the energy guzzlers hide, the Fraunhofer Institute for Applied Information Technology FIT in Sankt Augustin, Germany has developed an application that demonstrates the energy consumption of individual devices in the household. The basis for this is the “Hydra” middleware developed by the institute which is extended by an energy protocol. A middleware reduces the workload of programmers: in Hydra’s case, by administering the communication between devices.

Each device is given a power plogg, which is a small adapter located between the power plug and the power outlet. It reports the power consumption at any given time to a PC via a radio signal. People can tell which device is guzzling the most energy by taking a look at the computer monitor. But the FIT experts have also provided a far more convenient way to access the information: “Using a cell phone as the display and control unit allows people to check the energy consumed by their devices or appliances,” explains Dr. Markus Eisenhauer, who developed the system. “For example, it can be used to display the consumption by room, switch devices on and off, and dim lights.” And there is another special attraction: The cell phone's camera can be used as a "magic lens". Point the camera at the device in question, and the power consumption at the moment is shown.

The technology behind this feature is complex: A server stores pictures of the individual devices, taken from a number of directions. When the function is activated, the cell phone sends the picture taken to the server, which then compares the picture with the ones in its database. As soon as it has recognized the device, it determines the power consumption at the time as reported by the associated power plogg, and sends this information back to the cell phone.

The result is a multitude of options that allow people to analyze the power consumption of their devices: The total energy consumed by a device is a calculation of its power and the respective time that it is in use. In addition to the power at any given time, it is also possible to examine a device's total consumption, for example, extrapolated across the average time in use during a year. This even makes it possible to detect energy guzzlers in the household that are not always turned on, such as the oven.

Various other scenarios can also be run through. Eisenhauer’s colleague Marc Jentsch reports that “it is possible, for example, to try out the room lighting with energy-saving bulbs and compare this consumption with conventional light bulbs to see the impact on the electric bill.” A display of the current energy consumption along with the energy and cost savings per year facilitates this comparison. Similarly, it is possible to compare the energy used to play DVDs on a PlayStation with that when a DVD player is used.

The system is already equipped for the future. The cost of electricity could soon depend on the time of day, and this system allows people to save money by waiting until the electricity is cheap and then using their cell phones to switch on the washing machine.

Marc Jentsch | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/en/press/research-news/2010/january/save-energy.jsp

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>