Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making e-mobility user friendly

20.01.2014
DELFIN project develops innovative services and methods

How can companies break into the electromobility market faster and more effectively? In what way can innovative services help to focus electromobility solutions on users’ needs? What shape should IT support take? And what will the mobility markets of the future look like?


DELFIN project develops innovative services and methods (© Iakov Kalinin – Fotolia.com)

According to a Fraunhofer IAO survey, users’ view of electromobility is essentially positive. But despite this, electrically powered vehicles are still a rare sight on German roads. If we want to make electromobility more attractive to a wider public, we need to generate added value for users – for example, by means of new services and supporting IT structures.

In light of these challenges, a research project entitled “Services for electromobility – promoting innovation and user-friendliness”– the German acronym is DELFIN – for the first time addresses issues relating specifically to the user-friendliness of electromobility. The aim of the work now being carried out by Fraunhofer IAO, the FIR Institute for Industrial Management at RWTH Aachen University, and the Karlsruhe Service Research Institute (KSRI) at Karlsruhe Institute of Technology (KIT), is not just to explore new business models and consider approaches that give users an integral role in the development of new services, but also to integrate IT topics and forecast future market developments.

DELFIN is set up as a coordination project within the German Federal Ministry of Education and Research (BMBF)’s “Service innovations for electromobility” priority funding category. The partners are working together on an interdisciplinary basis to integrate and network existing solutions and markets and to ensure developments in electromobility are centered firmly on users’ needs. With innovation as the guiding principle, they can take cutting-edge electromobility concepts and implement them for a broad consumer base. The R&D projects receiving priority funding support each tackle a separate challenge on the road to a functioning system for electromobility. The objective of the DELFIN project is to usefully pool and integrate the results of these individual projects in order to create added value for both science and business.

The DELFIN project is sponsored by the German Federal Ministry of Education and Research (BMBF) under the funding code 01FE13001.

Contact:

Sabrina Cocca
New Service Development
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-5137
E-Mail: sabrina.cocca@iao.fraunhofer.de
Thomas Meiren
New Service Development
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-5116
E-Mail: thomas.meiren@iao.fraunhofer.de
Weitere Informationen:
http://www.emobility-services.com
http://www.iao.fraunhofer.de/lang-en/business-areas/service-and-human-resources-management/1082-making-e-mobility-user-friendly.html

Juliane Segedi | Fraunhofer-Institut
Further information:
http://www.iao.fraunhofer.de

Further reports about: BMBF Delfin E-Mobility End User Development IAO Mobile phone innovative services

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>