Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magic solar milestone reached

27.10.2008
UNSW claims 25 percent solar cell efficiency title

UNSW's ARC Photovoltaic Centre of Excellence has again asserted its leadership in solar cell technology by reporting the first silicon solar cell to achieve the milestone of 25 per cent effiency.

The UNSW ARC Photovoltaic Centre of Excellence already held the world record of 24.7 per cent for silicon solar cell efficiency. Now a revision of the international standard by which solar cells are measured, has delivered the significant 25 per cent record to the team led by Professors Martin Green and Stuart Wenham and widened their lead on the rest of the world.

Centre Executive Research Director, Scientia Professor Martin Green, said the new world mark in converting incident sunlight into electricity was one of six new world records claimed by UNSW for its silicon solar technologies.

Professor Green said the jump in performance leading to the milestone resulted from new knowledge about the composition of sunlight.

"Since the weights of the colours in sunlight change during the day, solar cells are measured under a standard colour spectrum defined under typical operational meteorological conditions," he said.

"Improvements in understanding atmospheric effects upon the colour content of sunlight led to a revision of the standard spectrum in April. The new spectrum has a higher energy content both down the blue end of the spectrum and at the opposite red end with, dare I say it, relatively less green."

The recalibration of the international standard, done by the International Electrochemical Commission in April, gave the biggest boost to UNSW technology while the measured efficiency of others made lesser gains. UNSW's world-leading silicon cell is now six per cent more efficient than the next-best technology, Professor Green said. The new record also inches the UNSW team closer to the 29 per cent theoretical maximum efficiency possible for first-generation silicon photovoltaic cells.

Dr Anita Ho-Baillie, who heads the Centre's high efficiency cell research effort, said the UNSW technology benefited greatly from the new spectrum "because our cells push the boundaries of response into the extremities of the spectrum".

"Blue light is absorbed strongly, very close to the cell surface where we go to great pains to make sure it is not wasted. Just the opposite, the red light is only weakly absorbed and we have to use special design features to trap it into the cell," she said.

Professor Green said: "These light-trapping features make our cells act as if they were much thicker than they are. This already has had an important spin-off in allowing us to work with CSG Solar to develop commercial 'thin-film' silicon-on-glass solar cells that are over 100 times thinner than conventional silicon cells."

ARC Centre Director, Professor Stuart Wenham said the focus of the Centre is now improving mainstream production. "Our main efforts now are focussed on getting these efficiency improvements into commercial production," he said. "Production compatible versions of our high efficiency technology are being introduced into production as we speak."

The world-record holding cell was fabricated by former Centre researchers, Dr Jianhua Zhao and Dr Aihua Wang, who have since left the Centre to establish China Sunergy, one of the world's largest photovoltaic manufacturers. "China was the largest manufacturer of solar cells internationally in 2007 with 70 per cent of the output from companies with our former UNSW students either Chief Executive Officers or Chief Technical Officers", said Professor Green.

Peter Trute | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>