Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Low-carbon hybrid energy systems -- China's future energy solutions

A low-carbon solution to high-carbon energy resources such as coal is proposed by their high efficient integration with either nuclear or renewable energy, which may figure out the strategic solution to China's future energy development. As a result, the research on "low-carbon hybrid energy system-- strategic solution and development patterns for China's future energy" has been published on SCIENTIC SINICA Chimica iin Chinesej, No.1, 2013.

Coal dominated energy resource and consumption structure in China. This leads to the great challenges for China's future energy development along with both growing demand for energy and high pressure for CO2 emission reduction. From the earlier viewpoint, the reduction of CO2 emission could be reached by replacing fossil fuel by low-carbon energy resources for electricity generation. However, it gave rise to the questions.

This shows the carbon flow for the hybrid energy system.

Credit: ©Science China Press

Is it possible to directly using low-carbon energy on the reduction of CO2 emission? Is there an efficient way to decrease the emission of CO2 by low-carbon energy, and utilize the C and O in CO2 to produce useful materials? Thus, a potential scheme is proposed to couple coal with the low-carbon energy via the high efficient integration, including nuclear, wind, solar, biomass and hydro power etc. Such a hybrid energy system may target both CO2 reduction and recycle on a large-scale.

The carbon flow for hybrid energy system is based on the utilization of carbon resources and the process of carbon recycling. High-carbon energy resources such as coal could be coupled with low-carbon energy resources such as nuclear energy and renewable energies by the effective integration between substances, energy and information. In principle, hear or electricity is generated by the low-carbon energy such as nuclear and renewable energy, then input to drive the high/low temperature electrolysis reaction and to provide H2 for high-carbon system. In this case, the water-gas shift reaction is replaced to suppress the CO2 emission. On the other hand, CO2 utilization could be carried out through CO2 hydrogenation. Consequently, both energy and carbon efficiency could be highly improved with a reduction of CO2 emission, and at the same time CO2 could be used as a resource.

Based on the above consideration, nuclear-assisted coal-based energy system and wind/solar-assisted coal (biomass)-based systems are analyzed as the case study for the preliminary techno-economic evaluations with detailed explanations provided. Such an integration is revealed to produce energy and chemicals with a simultaneous increase in both energy and carbon efficiency of fossil fuel. Hence, the low-carbon hybrid energy system can be considered as the potential solution to China's future energy development.

Obviously, the low-carbon hybrid energy system has the advantages of both high-carbon resources (such as coal) and low-carbon energy resources (such as nuclear or renewable energy) for the production of liquid fuel and chemicals on a large scale. It focuses on the current energy situation in China, fits the direction of energy development in China, and provides the strategic solution to China's future energy.

The research is supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No.XDA02000000) and the project of "Techno-economic evaluation of integrated energy system" from Shell Global Solutions International B.V.

Contact: SUN YuHan
See the article: TANG ZhiYong, SUN YuHan, JIANG MianHeng. Low-carbon hybrid energy systems——China's future energy solutions and development models? SCIENTIA SINICA Chimica, 2013, 43(1): 116-124.

Science China Press

Yan Bei | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Discovery about new battery overturns decades of false assumptions
07.10.2015 | Oregon State University

nachricht New polymer creates safer fuels
02.10.2015 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>