Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-range spin currents induced by heat herald a new era for spintronic applications

09.02.2009
Modern electronics is based on the transport of electrons, generated by a difference in electric voltage. In a bid for faster and smaller electronic devices, researchers have turned to the spin of electrons, or spintronics.

However, sustaining spin currents has proven difficult. Now researchers from the RIKEN Advanced Science Institute in Wako with scientists from Keio University, Yokohoma, and Tohoku University, Sendai, have—for the first time—observed the so-called spin Seebeck effect, which is able to generate pure spin currents across macroscopic distances.

The classic Seebeck effect describes the generation of an electric voltage when the ends of a material are at different temperatures. As such, it is used in thermoelectric devices that convert heat into electricity.

In a similar fashion, as reported by the researchers in Nature1, the spin Seebeck effect reported uses a temperature gradient in a magnetic material to create a flow of electron spins in the absence of any external voltage. As a result, spins of opposite polarization assemble at the two ends of the sample, creating a ‘spin voltage’ caused by the different spin polarizations at both ends. This use of thermal effects in spintronics is novel and unexpected. “The electron spin is usually controlled by magnetic fields, so nobody has thought about a thermoelectric response,” says Wataru Koshibae from the research team.

The discovery of the spin Seebeck effect is enabled by the so-called spin Hall effect. Through interactions between the spin current and the atoms in a metal, electrons of different spin orientations get scattered to opposite ends of the metal, creating an electrical voltage. The spin voltage created by the spin Seebeck effect is then detected by thin platinum sheets placed at both ends of the sample.

Importantly, in this setup the electrons don’t move at all, and only spins travel along the sample. This is markedly different to most other schemes where undesirable parallel electronic currents are unavoidable. In addition, there appears to be no limit to the distances along which spin currents can be sustained. “The spin Seebeck effect occurs in samples almost 1 cm long, much longer than the usual spin current decay lengths of 1 nm,” comments Koshibae.

This first observation of the spin Seebeck effect therefore marks a new era in spintronics and opens the door to novel applications. Long-distance spin current are critical to the realization of spintronic devices, and these results offer the generation of spin currents simply through temperature effects.

Reference

1. Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K. Maekawa, S. & Saitoh, E. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

The corresponding author for this highlight is based at the RIKEN Theoretical Design Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/645/
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>