Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

London Array: Siemens to provide grid access for world’s largest offshore wind farm

14.12.2009
With its 175 Siemens wind turbines and a total capacity of 630 megawatts (MW) the London Array offshore wind farm will following completion be the largest of its kind in the world.

After Siemens Energy was already appointed to supply the turbines for the wind farm, the company also received the order to connect London Array to the power supply network. Purchasers are Dong Energy, E.ON and Masdar, the wind farm’s owners. The order volume is EUR128 million. The wind farm is scheduled to be completed by 2012 and will be hooked up to London’s power supply network via the Siemens grid connection.

The wind farm is being erected in the Thames estuary approximately twenty kilometers off the Kent and Essex coasts. An option is also provided for uprating London Array to as much as 1000 MW. The wind farm will thus become the first in the 1-gigawatt class. That will be sufficient to supply 750,000 British households with eco-friendly electricity, which is equivalent to approximately a quarter of the population of Greater London. “Offshore wind farms of this size place particular demands in terms of grid access. We not only have the requisite technology and know-how but also a wealth of experience in connecting offshore wind farms to the grid,” said Udo Niehage, CEO of the Power Transmission Division of Siemens Energy.

Siemens will supply the electrical equipment for two offshore substation platforms, which will be installed right at the wind farm. The substations bundle the power generated by the 175 Siemens SWT-3.6 wind turbines, each rated at 3,6 MW, before it is transported via high-voltage subsea cable to the coast. On each of the platforms there are two 180-MVA transformers and medium-voltage switchgear. The requisite protection and instrumentation and control equipment is also installed on the platforms. Distribution over two platforms has the advantage that the cable routes within the wind farm are short, and power transmission losses are kept as low as possible to enhance the wind farm’s energy efficiency.

The transformers on the substation platforms step up the 33 kilovolts (kV) generated by the wind turbines to a transmission voltage of 150 kV. High-voltage subsea cables transport the electricity to the grid access point, which is located in Cleve Hill. In addition to a substation with four 180-MVA power transformers (400/150 kV) Siemens will also install four 50-MVAr reactive-power compensators at this access point to fulfill the British grid’s requirements (Grid Code) on the quality of the electrical energy fed into the grid.

For that purpose Siemens will deploy its new SVC Plus system. It operates with innovative voltage-sourced converter (VSC) technology and is continuously controllable with the aid of insulated-gate bipolar transistors (IGBTs). The central feature of SVC Plus, a further refined statcom (static synchronous compensator), is its modular multilevel converter technology. By contrast with other self-commutated converter topologies the voltage waveform generated is practically sinusoidal because of the multilevel technology. This means that the low-frequency harmonic filters required in solutions used to date are no longer needed and significantly less space is required for the overall system.

Siemens will also prepare the requisite design studies for grid access for all of the wind farm’s electrical components and prepare the grid studies to demonstrate fulfillment of grid access requirements.

The provision of energy-efficient grid access for offshore wind farms is part of Siemens’ Environmental Portfolio. In fiscal 2009, revenue from the Portfolio totaled about €23 billion, making Siemens the world’s largest supplier of eco-friendly technologies. In the same period, our products and solutions enabled customers to reduce their CO2 emissions by 210 million tons."

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2009 (ended September 30), the Energy Sector had revenues of approximately EUR25.8 billion and received new orders totaling approximately EUR30 billion and posted a profit of EUR3.3 billion. On September 30, 2009, the Energy Sector had a work force of more than 85,100.

Dietrich Biester | Siemens Energy
Further information:
http://www.siemens.com/energy

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>