Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

London Array: Siemens to provide grid access for world’s largest offshore wind farm

14.12.2009
With its 175 Siemens wind turbines and a total capacity of 630 megawatts (MW) the London Array offshore wind farm will following completion be the largest of its kind in the world.

After Siemens Energy was already appointed to supply the turbines for the wind farm, the company also received the order to connect London Array to the power supply network. Purchasers are Dong Energy, E.ON and Masdar, the wind farm’s owners. The order volume is EUR128 million. The wind farm is scheduled to be completed by 2012 and will be hooked up to London’s power supply network via the Siemens grid connection.

The wind farm is being erected in the Thames estuary approximately twenty kilometers off the Kent and Essex coasts. An option is also provided for uprating London Array to as much as 1000 MW. The wind farm will thus become the first in the 1-gigawatt class. That will be sufficient to supply 750,000 British households with eco-friendly electricity, which is equivalent to approximately a quarter of the population of Greater London. “Offshore wind farms of this size place particular demands in terms of grid access. We not only have the requisite technology and know-how but also a wealth of experience in connecting offshore wind farms to the grid,” said Udo Niehage, CEO of the Power Transmission Division of Siemens Energy.

Siemens will supply the electrical equipment for two offshore substation platforms, which will be installed right at the wind farm. The substations bundle the power generated by the 175 Siemens SWT-3.6 wind turbines, each rated at 3,6 MW, before it is transported via high-voltage subsea cable to the coast. On each of the platforms there are two 180-MVA transformers and medium-voltage switchgear. The requisite protection and instrumentation and control equipment is also installed on the platforms. Distribution over two platforms has the advantage that the cable routes within the wind farm are short, and power transmission losses are kept as low as possible to enhance the wind farm’s energy efficiency.

The transformers on the substation platforms step up the 33 kilovolts (kV) generated by the wind turbines to a transmission voltage of 150 kV. High-voltage subsea cables transport the electricity to the grid access point, which is located in Cleve Hill. In addition to a substation with four 180-MVA power transformers (400/150 kV) Siemens will also install four 50-MVAr reactive-power compensators at this access point to fulfill the British grid’s requirements (Grid Code) on the quality of the electrical energy fed into the grid.

For that purpose Siemens will deploy its new SVC Plus system. It operates with innovative voltage-sourced converter (VSC) technology and is continuously controllable with the aid of insulated-gate bipolar transistors (IGBTs). The central feature of SVC Plus, a further refined statcom (static synchronous compensator), is its modular multilevel converter technology. By contrast with other self-commutated converter topologies the voltage waveform generated is practically sinusoidal because of the multilevel technology. This means that the low-frequency harmonic filters required in solutions used to date are no longer needed and significantly less space is required for the overall system.

Siemens will also prepare the requisite design studies for grid access for all of the wind farm’s electrical components and prepare the grid studies to demonstrate fulfillment of grid access requirements.

The provision of energy-efficient grid access for offshore wind farms is part of Siemens’ Environmental Portfolio. In fiscal 2009, revenue from the Portfolio totaled about €23 billion, making Siemens the world’s largest supplier of eco-friendly technologies. In the same period, our products and solutions enabled customers to reduce their CO2 emissions by 210 million tons."

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2009 (ended September 30), the Energy Sector had revenues of approximately EUR25.8 billion and received new orders totaling approximately EUR30 billion and posted a profit of EUR3.3 billion. On September 30, 2009, the Energy Sector had a work force of more than 85,100.

Dietrich Biester | Siemens Energy
Further information:
http://www.siemens.com/energy

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>