Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighting Research Center Authors National Academies Report on New Roadway Lighting Technologies

13.06.2014

LEDs Ready for Prime Time, Not All Systems Perform Equally Well

The rapid development of lighting technologies, particularly solid-state systems using light emitting diodes (LEDs), has opened a universe of new possibilities as well as new questions about roadway lighting in the U.S., which for decades has been dominated by the use of high pressure sodium (HPS) lamps. Other light source technologies have also been angling for roadway market share.


The rapid development of lighting technologies, particularly solid-state systems using light emitting diodes (LEDs), has opened a universe of new possibilities as well as new questions about roadway lighting in the U.S., which for decades has been dominated by the use of high pressure sodium (HPS) lamps.

There is a critical need for objective technical information about new types of roadway lighting among transportation agencies. In response, the Transportation Research Board (TRB), part of the National Academies, initiated a project to evaluate new lighting technologies and identify new metrics for comparison.

Lighting Research Center (LRC) scientists John Bullough, who served as principal investigator, and Leora Radetsky co-authored the report, entitled "Analysis of New Highway Lighting Technologies." The LRC is part of Rensselaer Polytechnic Institute, the nation’s oldest technological research university.

... more about:
»LEDs »LRC »Polytechnic »RPI »Roadway »laboratories »technologies

A major challenge in assessing new roadway lighting technologies is that information for different systems is given in different forms, making comparisons difficult. Bullough and Radetsky systematically analyzed the performance of a number of representative luminaires of each type, and developed a consistent "data sheet" format, allowing direct comparisons.

They found that many commercially available LED, ceramic metal halide, and plasma discharge roadway lighting systems can meet existing standards for lighting collector roads and freeways, achieving comparable or greater pole spacing than HPS systems and in many cases, resulting in lower energy use.

Importantly, say Bullough and Radetsky, not all systems of each type performed equally well. This underscores the importance of developing consistent data reporting formats such as those in their report.

The authors found that pole height was an important factor in the overall effectiveness of the roadway lighting system. A metric developed by the LRC, called luminaire system application efficacy (LSAE), can be used to optimize pole height and spacing to achieve optimal economic performance of different roadway lighting designs. Bullough and Radetsky also recommend that transportation agencies begin considering new benefit metrics for roadway lighting including photometric quantities based on mesopic vision, brightness perception and visual comfort.

According to Bullough, "Technologies such as LEDs are becoming mainstream choices for roadway lighting. The findings in our report can help agencies make better decisions as they face these choices."

The report by Bullough and Radetsky can be downloaded from the TRB website at: http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP20-07(305)_FR.pdf.

About the Lighting Research Center
The Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is the world’s leading center for lighting research and education. Established in 1988 by the New York State Energy Research and Development Authority (NYSERDA), the LRC has been pioneering research in energy and the environment, light and health, transportation lighting and safety, and solid-state lighting for more than 25 years. In 1990, the LRC became the first university research center to offer graduate degrees in lighting and today the LRC offers both a M.S. in lighting as well as a Ph.D. to educate future leaders in lighting. Internationally recognized as the preeminent source for objective information on all aspects of lighting technology and application, LRC researchers conduct independent, third-party testing of lighting products in the LRC’s state of the art photometric laboratories, the only university lighting laboratories accredited by the National Voluntary Laboratory Accreditation Program (NVLAP Lab Code: 200480-0). LRC researchers are continuously working to develop new and better ways to measure the value of light and lighting systems, such as the effect of light on human health. The LRC believes that by accurately matching the lighting technology and application to the needs of the end user, it is possible to design lighting that benefits both society and the environment.

Rebekah Mullaney | newswise
Further information:
http://www.rpi.edu

Further reports about: LEDs LRC Polytechnic RPI Roadway laboratories technologies

More articles from Power and Electrical Engineering:

nachricht Could off-grid electricity systems accelerate energy access?
26.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht Test of the no-harm-criteria of additives
19.04.2016 | Oel-Waerme-Institut GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>