Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light twists rigid structures in unexpected nanotech finding

18.03.2010
In findings that took the experimenters three years to believe, University of Michigan engineers and their collaborators have demonstrated that light itself can twist ribbons of nanoparticles. The results are published in the current edition of Science.

Matter readily bends and twists light. That's the mechanism behind optical lenses and polarizing 3-D movie glasses. But the opposite interaction has rarely been observed, said Nicholas Kotov, principal investigator on the project. Kotov is a professor in the departments of Chemical Engineering, Biomedical Engineering and Materials Science and Engineering.

While light has been known to affect matter on the molecular scale—bending or twisting molecules a few nanometers in size—it has not been observed causing such drastic mechanical twisting to larger particles. The nanoparticle ribbons in this study were between one and four micrometers long. A micrometer is one-millionth of a meter.

"I didn't believe it at the beginning," Kotov said. "To be honest, it took us three and a half years to really figure out how photons of light can lead to such a remarkable change in rigid structures a thousand times bigger than molecules."

Kotov and his colleagues had set out in this study to create "superchiral" particles—spirals of nano-scale mixed metals that could theoretically focus visible light to specks smaller than its wavelength. Materials with this unique "negative refractive index" could be capable of producing Klingon-like invisibility cloaks, said Sharon Glotzer, a professor in the departments of Chemical Engineering and Materials Science and Engineering who was also involved in the experiments. The twisted nanoparticle ribbons are likely to lead to the superchiral materials, the professors say.

To begin the experiment, the researchers dispersed nanoparticles of cadmium telluride in a water-based solution. They checked on them intermittently with powerful microscopes. After about 24 hours under light, the nanoparticles had assembled themselves into flat ribbons. After 72 hours, they had twisted and bunched together in the process.

But when the nanoparticles were left in the dark, distinct, long, straight ribbons formed.

"We discovered that if we make flat ribbons in the dark and then illuminate them, we see a gradual twisting, twisting that increases as we shine more light," Kotov said. "This is very unusual in many ways."

The light twists the ribbons by causing a stronger repulsion between nanoparticles in them.

The twisted ribbon is a new shape in nanotechnology, Kotov said. Besides superchiral materials, he envisions clever applications for the shape and the technique used to create I it. Sudhanshu Srivastava, a postdoctoral researcher in his lab, is trying to make the spirals rotate.

"He's making very small propellers to move through fluid—nanoscale submarines, if you will," Kotov said. "You often see this motif of twisted structures in mobility organs of bacteria and cells."

The nanoscale submarines could conceivably be used for drug-delivery and in microfluidic systems that mimic the body for experiments.

This newly-discovered twisting effect could also lead to microelectromechanical systems that are controlled by light. And it could be utilized in lithography, or microchip production.

Glotzer and Aaron Santos, a postdoctoral researcher in her lab, performed computer simulations that helped Kotov and his team better understand how the ribbons form. The simulations showed that under certain circumstances, the complex combination of forces between the tetrahedrally-shaped nanoparticles could conspire to produce ribbons of just the width observed in the experiments. A tetrahedron is a pyramid-shaped, three-dimensional polyhedron.

"The precise balance of forces leading to the self-assembly of ribbons is very revealing," Glotzer said. "It could be used to stabilize other nanostructures made of non-spherical particles. It's all about how the particles want to pack themselves."

Other collaborators include researchers from the University of Leeds in the UK, Chungju National University in Korea, Argonne National Laboratory, Pusan National University in Korea and Jiangnan University in China.

The paper is titled Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons. The research is funded by the Air Force Office of Scientific Research, the Korea Science and Engineering Foundation and the U.S. Department of Energy.

Michigan Engineering: The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu/

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>