Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Letting in the Light

31.01.2014
Self-cleaning solar panel coating optimizes energy collection, reduces costs

Soiling -- the accumulation of dust and sand -- on solar power reflectors and photovoltaic cells is one of the main efficiency drags for solar power plants, capable of reducing reflectivity up to 50 percent in 14 days.


iStockphoto image

Solar power reflectors collect dust and sand, reducing their energy efficiency—a challenge ORNL researchers are tackling by developing a low-cost, anti-soiling coating.

Though plants can perform manual cleaning and brushing with deionized water and detergent, this labor-intensive routine significantly raises operating and maintenance costs (O&M), which is reflected in the cost of solar energy for consumers.

Under the sponsorship of the Department of Energy’s Energy Efficiency and Renewable Energy SunShot Concentrating Solar Power Program, Oak Ridge National Laboratory is developing a low-cost, transparent, anti-soiling (or self-cleaning) coating for solar reflectors to optimize energy efficiency while lowering O&M costs and avoiding negative environmental impacts.

The coating—which is being designed by members of the Energy and Transportation Science Division, including Scott Hunter, Bart Smith, George Polyzos, and Daniel Schaeffer—is based on a superhydrophobic coating technology developed at ORNL that has been shown to effectively repel water, viscous liquids, and most solid particles. Unlike other superhydrophobic approaches that employ high-cost vacuum deposition and chemical etching to nano-engineer desired surfaces, ORNL’s coatings are deposited by conventional painting and spraying methods using a mixture of organics and particles. In addition to being low-cost, these methods can be deployed easily in the field during repairs and retro-fitting.

There are, however, challenges to the successful development of such a transparent, anti-soiling coating. First, the coating must be very superhydrophobic to minimize the need for occasional cleaning, and it must have minimal (or even zero) effect on the transmission and scattering of solar radiation between the wavelengths of 250 to 3,000 nm. To meet these requirements, the coating must be no more than a few hundred nanometers thick, and the embedded particles must be considerably smaller. The extremely thin coating must also be durable under environmental exposure, including UV radiation and sand erosion, and be compliant according to the US Environmental Protection Agency Clean Air Act emission standards—which limits the selection and combination of particles and organics that can be used effectively.

During the first year of this project, researchers experimented with a variety of Clean Air Act–compliant organics and silica particles of different sizes. They arrived at a particular formulation combining organic compounds with silica particles, which are dispersed in two sizes to enhance area coverage of particles within the coating.

The anti-soiling coating exhibited excellent superhydrophobic properties, losing less than 0.3% of transparency over the entire solar radiation wavelength range. When exposed to several hundred hours of accelerated UV radiation and one hundred hours of salt fog exposure, the coating exhibited no degradation in superhydrophobic or optical transmission properties. Also, when glass slides with the anti-soiling coating were exposed to sand and dust in a custom-made wind tunnel, the particles did not adhere to the coated surface of the slides—showing great potential for its use in harsh environmental conditions.

In addition to anti-soiling coating for solar applications, ORNL researchers are using their superhydrophobicity expertise to develop anti-soiling cool roof coatings, as well as anti-icing and anti-condensation coatings for air conditioning and evaporative cooling applications, respectively. Going into 2014, the project has been funded for another year and will optimize the coating and perform accelerated exposure tests, as well as begin development on a scalable coating technique and perform small-scale field testing.—Katie Elyce Jones

Bill Cabage | Newswise
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Trojan Transit Rolling Out
27.03.2015 | University of Arkansas at Little Rock

nachricht Ultra-Thin Silicon Films Create Vibrant Optical Colors
25.03.2015 | University of Alabama Huntsville

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>