Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of First Operating System for Smart Grid Home Automation

17.12.2009
Fraunhofer IWES presents the OGEMA Alliance, which will offer an open software platform for energy management

More than 40% of the final energy consumption in Germany is related to buildings. Heating, cooling, domestic hot water supply and the operation of electrical appliances are the areas with the highest demand - electric vehicles are expected to become increasingly important in this context.

The Open Gateway Energy Management Alliance (OGEMA) provides an open software platform for energy management which links the customer's loads and generators to the control stations of the power supply system and includes a customer display for user-interaction. In this way end customers will be able to automatically observe the future variable price of electricity and shift energy consumption to times when the price is low. All developers and involved parties can turn their ideas for more efficient energy usage by automation into software for the gateway platform.

Many people talk about saving energy, but when it actually comes down to it most people are not prepared to adjust the heating up and down according to room usage or to search for energy guzzlers within the house as this is all too cumbersome. As well as saving energy, shifting energy consumption according to supply is also becoming more and more important. With an increasing share of wind power and photovoltaics as well as decentralized generators such as combined-heat-and-power units, the large conventional power plants are decreasingly capable of controlling the electrical supply system. "Already today electricity is for free on the German Energy Exchange at times when large power plants have to be derated due to high feed-in from wind power. Using automated load-shifting, private households and small business should also benefit from such favorable electricity prices", explains Dr. Philipp Strauß, head of the Division of System Engineering und Grid Integration at the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Kassel, Germany.

Together with partners from the Model City Mannheim project (i.a. MVV Energie and IBM Deutschland) and SmartHouse/SmartGrid (i.a. ECN, The Netherlands), Fraunhofer IWES is developing technology to assist the user in smarter energy consumption through taking over as much work for him or her as possible. In order to further develop and promote this concept the Open Gateway Energy Management Alliance (OGEMA) is being founded by Fraunhofer IWES and all interested parties are invited to participate. Similar to successful open source projects such as Linux or the web browser Firefox, anyone will be able to turn ideas into software for the gateway platform - also those not participating in the OGEMA Alliance. Similar to novel mobile phones, a multitude of applications ("apps") are to be developed within a short period of time. These apps will cover the differing requirements of private households, super markets, small businesses as well as public institutions such as schools and hospitals and help to tap potential for energy efficiency which is not accessed today.

The developers of driver software for connecting the gateway to devices and energy systems within the building as well as to the control stations of the energy suppliers can also use the open interfaces provided by OGEMA. Similar to the operating system on a PC, the gateway brings together applications and hardware. It also acts as a firewall between the private area of the customer on the one hand and the public internet and public energy supply networks on the other hand. It thus takes into account the need for data privacy and for security against external manipulation.

"Shifting energy into times of high generation and saving energy should not only save money, but should also be fun", stresses Dr. David Nestle, head of the Decentralized Energy Management group at Fraunhofer IWES. For this reason OGEMA will open up a variety of new opportunities for the user - e.g. controlling single heating radiators precisely over time following to the requirements of the users or adapting the operation of electrical appliances according to the generation of the customer's photovoltaic plant. The floor is again open to the ideas of developers and providers of applications.

Fraunhofer IWES is currently developing a first version of the OGEMA software, which is to be made public and available for download on the OGEMA home page at the beginning of 2010 (http://www.ogema-alliance.org). Further information on the technical concept can already be found under this link. In the framework of the E-Energy research program, which is funded jointly by the German Ministry of Economics (BMWi) and the German Ministry of Environment (BMU), with a total budget of approx. 140 million euros, OGEMA was presented at the yearly E-Energy congress on November 26-27, 2009 in Berlin. OGEMA technology is also developed and used in the project SmartHouse/SmartGrid funded by the European Commission.

Fraunhofer IWES

The Fraunhofer Institute for Wind Energy and Energy System Technology IWES was founded on January 1, 2009 and consists of the former Fraunhofer Center for Wind-energy and Marine Technology CWMT in Bremerhaven and the Institute for Solar Energy Power Supply Systems Technology ISET e.V. in Kassel. Research areas cover the complete wind energy spectrum and the integration of all renewables into the energy supply system. At the moment around 220 scientists, employees and students are employed. The annual budget is currently approx. 15 million euros. Fraunhofer IWES is one of 60 Institutes belonging to the Fraunhofer-Gesellschaft, which is the largest organization for applied research in Europe.

> www.iwes.fraunhofer.de

Weitere Informationen:
http://E-Energy-program & projects: http://www.e-energy.de/
http://E-Energy-congress: http://www.e-energy.de/de/jahreskongress.php (in German)
http://Project Model City Mannheim: http://www.modellstadt-mannheim.de/ (in German)
http://Project SmartHouse/SmartGrid: http://www.smarthouse-smartgrid.eu/
http://OGEMA-Alliance: http://www.ogema-alliance.org

Uwe Krengel | Fraunhofer Gesellschaft
Further information:
http://www.ogema-alliance.org
http://www.e-energy.de/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>