Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest research into Clean Technologies

10.09.2008
Last week, at the CopenMind exhibition in Copenhagen, the latest research into Clean Technology was exhibited. Some of the research from Asia included using waste produced by the electronics industry to convert wasted heat into electricity, using hydrogen energy in agriculture, plans for cheap solar energy and more.

The three universities from Japan were Tokyo University of Science, Tokai University and Tokyo Institute of Technology. Summaries of the technologies presented are given below.

SILICON WASTE TO ELECTRICITY

The electronics industry produces silicon sludge as waste. In the process of silicon wafer fabrication, about 60% of the initial silicon source is discarded as silicon sludge. Even solar cell fabrication produces silicon sludge waste. Associate Prof. Iida and his team from Tokyo University of Science have developed a technology which converts silicon sludge into magnesium silicide (Mg2Si), a material which traps wasted heat energy and converts it into electricity. One possible use for this technology is in diesel or petrol cars which wastes about 70 % of heat generated in the engine and exhausts.

COMMERCIAL SCALE LOW COST CONCENTRATING SOLAR POWER

Solar energy generation is expensive. Tokyo Institute of Technology (Tokyo Tech) scientists have plans to bring the cost of solar power generation down to 8 or 9 US cents/KWh. They have vastly improved the beam down solar thermal system. A 100 kW pilot plant is scheduled to be operating in Abu Dhabi in June 2009 in view of the next step, namely a 20 MW demonstration plant construction. Tokyo Tech scientists are now in the process of improving technological difficulties faced by the beam down system by developing multi-ring central reflectors, molten salt receiver, intelligent heliostat and more, which greatly reduces the cost of the system.

HYDROGEN ENERGY AND SUSTAINABLE DEVELOPMENT

The treasured resource of Saijo City in Western Japan is its clean mineral water from their underground springs. In fact it is one of the best 100 drinking mineral water sources in Japan. Like most cities, Saijo City would like to be self sufficient, rejuvenate local businesses and increase its food production. However, they want to do this without adding stress on the natural environment. To achieve its sustainable development goal, Saijo City collaborated with Prof. Uchida and his team from Tokai University to make use of new clean hydrogen technology while utilising their treasured resource, water. This resulted in the Metal Hydride (MH) freezer system which was tested on their strawberry industry in 2007. The system makes use of wasted heat from a nearby steel factory and water from the underground spring to produce cooling water (below 278K) for the strawberries. The MH system is clean without CFC or ammonia gas and consumes 30% less energy than conventional Freon gas type freezers. It uses hydrogen and hydrogen storage alloys and can make use of high temperature wasted heat from industry or incinerators and low temperature sources like groundwater, rivers or the ocean but does not contaminate the water source. You can read Prof. Uchida’s paper on this project from this link: http://pubweb.cc.u-tokai.ac.jp/7aarm012/proceedings/HirohisaUchida.pdf

MORE ON ENERGY

Hydrogen is a sustainable clean energy source but current technologies for producing hydrogen rely on fossil fuels. Tokyo University of Science’s Associate Prof. Ohkawa’s team is interested in the production of hydrogen from sources like seawater and will make use of semiconductor materials and nanotechnology to do it without the use of fossil fuels. Prof. Arakawa and his team are developing new energy technologies based on lessons learnt from natural plant photosynthesis. Their research is centred on a new dye-sensitized solar cell and producing hydrogen from water using solar energy. Meanwhile Prof. Kudo is working on photocatalytic water splitting which many claim will be the ultimate chemical reaction for solving energy and environment issues. Tokyo University of Science’s research target is to develop new photocatalyst materials for water splitting and to achieve an artificial photosynthesis and solar hydrogen production from water. Another research team, is interested in finding out which genes are involved in bio-energy production such as bio-ethanol and hydrogen. Prof. Murakami plans to do this by developing a novel DNA microarray system.

Also on hydrogen energy, Tokai University has developed is a system of wind-solar hybrid energy storage system which stores electricity from wind and solar energy as hydrogen. The system is specially designed for use in a city which has fluctuating wind directions. The system produces electricity from the solar and wind sources which then decomposes water into oxygen and hydrogen gases using a solid polymer electrolyte. The hydrogen gas is stored in tanks containing nano-structured TiFe, hydrogen storage alloy and supplied to a fuel cell for powering LED lights at night.

Prof. Soai from Tokyo University of Science discovered the first asymmetric autocatalysis with amplification of enantiopurity in 1995. Prof. Soai and his team are currently interested in energy saving asymmetric catalysis.

COOLING TECHNOLOGY

Electronic devices produce heat and conventional cooling technology is struggling to remove the high heat flux generated by these systems. Prof. Suzuki from Tokyo University of Science is working on the next generation of cooling technology using micro bubbles while his colleague Prof. Tsujimoto is working on cooling systems with water mist sprayers.

SAILING

For sailors, Tokai University scientist have succeeded in a boat design which saves up to 50% of fuel by converting the ocean’s wave energy directly into thrust while reducing hull motion in the waves.

URBAN PLANNING

On issues related to urban transportation, Prof. Fukuda from Tokyo Tech showed their simulation system that can be used to analyse and evaluate impacts of transportation policy. Tokyo Tech’s simulation has already shown that Tokyo Metropolitan government upcoming plans may not ease pollution problems in downtown Tokyo as expected. The system known as ARTIST, (Atmospheric and Regional Traffic Integration: A Simulation System of Tokyo Tech) is the first to combine microscopic traffic simulator with meso-scale regional atmospheric simulator. This means the system is able to include data on microscopic and regional scale, useful for including microscopic particulate matter and regional atmospheric patterns.

INTELLECTUAL PROPERTY

Last but not least, the issue of Intellectual Property. Much has been said about the protection of intellectual property. Tokai University’s Prof Uchida believes this should a way of life. The Tokai University syllabus introduces the concept of Intellectual Property from kindergarten, through to primary, secondary and university level. They believe that respect for IP should start early on because it is one of the most important assets of society which fosters creativity and entrepreneurship, and therefore should be instilled in all levels of society. The Tokai IP Education model’s motto is “IP Education as Education in Creativity – to foster humanistic people who are creative and able to contribute to building a more affluent and peaceful society”

If you would like more information about the research, or to contact the universities, please email info@researchsea.com.

Dr Magdeline Pokar | ResearchSEA
Further information:
http://www.researchsea.com
http://www.sut.ac.jp/en/
http://www.titech.ac.jp/

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>