Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest research into Clean Technologies

10.09.2008
Last week, at the CopenMind exhibition in Copenhagen, the latest research into Clean Technology was exhibited. Some of the research from Asia included using waste produced by the electronics industry to convert wasted heat into electricity, using hydrogen energy in agriculture, plans for cheap solar energy and more.

The three universities from Japan were Tokyo University of Science, Tokai University and Tokyo Institute of Technology. Summaries of the technologies presented are given below.

SILICON WASTE TO ELECTRICITY

The electronics industry produces silicon sludge as waste. In the process of silicon wafer fabrication, about 60% of the initial silicon source is discarded as silicon sludge. Even solar cell fabrication produces silicon sludge waste. Associate Prof. Iida and his team from Tokyo University of Science have developed a technology which converts silicon sludge into magnesium silicide (Mg2Si), a material which traps wasted heat energy and converts it into electricity. One possible use for this technology is in diesel or petrol cars which wastes about 70 % of heat generated in the engine and exhausts.

COMMERCIAL SCALE LOW COST CONCENTRATING SOLAR POWER

Solar energy generation is expensive. Tokyo Institute of Technology (Tokyo Tech) scientists have plans to bring the cost of solar power generation down to 8 or 9 US cents/KWh. They have vastly improved the beam down solar thermal system. A 100 kW pilot plant is scheduled to be operating in Abu Dhabi in June 2009 in view of the next step, namely a 20 MW demonstration plant construction. Tokyo Tech scientists are now in the process of improving technological difficulties faced by the beam down system by developing multi-ring central reflectors, molten salt receiver, intelligent heliostat and more, which greatly reduces the cost of the system.

HYDROGEN ENERGY AND SUSTAINABLE DEVELOPMENT

The treasured resource of Saijo City in Western Japan is its clean mineral water from their underground springs. In fact it is one of the best 100 drinking mineral water sources in Japan. Like most cities, Saijo City would like to be self sufficient, rejuvenate local businesses and increase its food production. However, they want to do this without adding stress on the natural environment. To achieve its sustainable development goal, Saijo City collaborated with Prof. Uchida and his team from Tokai University to make use of new clean hydrogen technology while utilising their treasured resource, water. This resulted in the Metal Hydride (MH) freezer system which was tested on their strawberry industry in 2007. The system makes use of wasted heat from a nearby steel factory and water from the underground spring to produce cooling water (below 278K) for the strawberries. The MH system is clean without CFC or ammonia gas and consumes 30% less energy than conventional Freon gas type freezers. It uses hydrogen and hydrogen storage alloys and can make use of high temperature wasted heat from industry or incinerators and low temperature sources like groundwater, rivers or the ocean but does not contaminate the water source. You can read Prof. Uchida’s paper on this project from this link: http://pubweb.cc.u-tokai.ac.jp/7aarm012/proceedings/HirohisaUchida.pdf

MORE ON ENERGY

Hydrogen is a sustainable clean energy source but current technologies for producing hydrogen rely on fossil fuels. Tokyo University of Science’s Associate Prof. Ohkawa’s team is interested in the production of hydrogen from sources like seawater and will make use of semiconductor materials and nanotechnology to do it without the use of fossil fuels. Prof. Arakawa and his team are developing new energy technologies based on lessons learnt from natural plant photosynthesis. Their research is centred on a new dye-sensitized solar cell and producing hydrogen from water using solar energy. Meanwhile Prof. Kudo is working on photocatalytic water splitting which many claim will be the ultimate chemical reaction for solving energy and environment issues. Tokyo University of Science’s research target is to develop new photocatalyst materials for water splitting and to achieve an artificial photosynthesis and solar hydrogen production from water. Another research team, is interested in finding out which genes are involved in bio-energy production such as bio-ethanol and hydrogen. Prof. Murakami plans to do this by developing a novel DNA microarray system.

Also on hydrogen energy, Tokai University has developed is a system of wind-solar hybrid energy storage system which stores electricity from wind and solar energy as hydrogen. The system is specially designed for use in a city which has fluctuating wind directions. The system produces electricity from the solar and wind sources which then decomposes water into oxygen and hydrogen gases using a solid polymer electrolyte. The hydrogen gas is stored in tanks containing nano-structured TiFe, hydrogen storage alloy and supplied to a fuel cell for powering LED lights at night.

Prof. Soai from Tokyo University of Science discovered the first asymmetric autocatalysis with amplification of enantiopurity in 1995. Prof. Soai and his team are currently interested in energy saving asymmetric catalysis.

COOLING TECHNOLOGY

Electronic devices produce heat and conventional cooling technology is struggling to remove the high heat flux generated by these systems. Prof. Suzuki from Tokyo University of Science is working on the next generation of cooling technology using micro bubbles while his colleague Prof. Tsujimoto is working on cooling systems with water mist sprayers.

SAILING

For sailors, Tokai University scientist have succeeded in a boat design which saves up to 50% of fuel by converting the ocean’s wave energy directly into thrust while reducing hull motion in the waves.

URBAN PLANNING

On issues related to urban transportation, Prof. Fukuda from Tokyo Tech showed their simulation system that can be used to analyse and evaluate impacts of transportation policy. Tokyo Tech’s simulation has already shown that Tokyo Metropolitan government upcoming plans may not ease pollution problems in downtown Tokyo as expected. The system known as ARTIST, (Atmospheric and Regional Traffic Integration: A Simulation System of Tokyo Tech) is the first to combine microscopic traffic simulator with meso-scale regional atmospheric simulator. This means the system is able to include data on microscopic and regional scale, useful for including microscopic particulate matter and regional atmospheric patterns.

INTELLECTUAL PROPERTY

Last but not least, the issue of Intellectual Property. Much has been said about the protection of intellectual property. Tokai University’s Prof Uchida believes this should a way of life. The Tokai University syllabus introduces the concept of Intellectual Property from kindergarten, through to primary, secondary and university level. They believe that respect for IP should start early on because it is one of the most important assets of society which fosters creativity and entrepreneurship, and therefore should be instilled in all levels of society. The Tokai IP Education model’s motto is “IP Education as Education in Creativity – to foster humanistic people who are creative and able to contribute to building a more affluent and peaceful society”

If you would like more information about the research, or to contact the universities, please email info@researchsea.com.

Dr Magdeline Pokar | ResearchSEA
Further information:
http://www.researchsea.com
http://www.sut.ac.jp/en/
http://www.titech.ac.jp/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>