Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest research into Clean Technologies

10.09.2008
Last week, at the CopenMind exhibition in Copenhagen, the latest research into Clean Technology was exhibited. Some of the research from Asia included using waste produced by the electronics industry to convert wasted heat into electricity, using hydrogen energy in agriculture, plans for cheap solar energy and more.

The three universities from Japan were Tokyo University of Science, Tokai University and Tokyo Institute of Technology. Summaries of the technologies presented are given below.

SILICON WASTE TO ELECTRICITY

The electronics industry produces silicon sludge as waste. In the process of silicon wafer fabrication, about 60% of the initial silicon source is discarded as silicon sludge. Even solar cell fabrication produces silicon sludge waste. Associate Prof. Iida and his team from Tokyo University of Science have developed a technology which converts silicon sludge into magnesium silicide (Mg2Si), a material which traps wasted heat energy and converts it into electricity. One possible use for this technology is in diesel or petrol cars which wastes about 70 % of heat generated in the engine and exhausts.

COMMERCIAL SCALE LOW COST CONCENTRATING SOLAR POWER

Solar energy generation is expensive. Tokyo Institute of Technology (Tokyo Tech) scientists have plans to bring the cost of solar power generation down to 8 or 9 US cents/KWh. They have vastly improved the beam down solar thermal system. A 100 kW pilot plant is scheduled to be operating in Abu Dhabi in June 2009 in view of the next step, namely a 20 MW demonstration plant construction. Tokyo Tech scientists are now in the process of improving technological difficulties faced by the beam down system by developing multi-ring central reflectors, molten salt receiver, intelligent heliostat and more, which greatly reduces the cost of the system.

HYDROGEN ENERGY AND SUSTAINABLE DEVELOPMENT

The treasured resource of Saijo City in Western Japan is its clean mineral water from their underground springs. In fact it is one of the best 100 drinking mineral water sources in Japan. Like most cities, Saijo City would like to be self sufficient, rejuvenate local businesses and increase its food production. However, they want to do this without adding stress on the natural environment. To achieve its sustainable development goal, Saijo City collaborated with Prof. Uchida and his team from Tokai University to make use of new clean hydrogen technology while utilising their treasured resource, water. This resulted in the Metal Hydride (MH) freezer system which was tested on their strawberry industry in 2007. The system makes use of wasted heat from a nearby steel factory and water from the underground spring to produce cooling water (below 278K) for the strawberries. The MH system is clean without CFC or ammonia gas and consumes 30% less energy than conventional Freon gas type freezers. It uses hydrogen and hydrogen storage alloys and can make use of high temperature wasted heat from industry or incinerators and low temperature sources like groundwater, rivers or the ocean but does not contaminate the water source. You can read Prof. Uchida’s paper on this project from this link: http://pubweb.cc.u-tokai.ac.jp/7aarm012/proceedings/HirohisaUchida.pdf

MORE ON ENERGY

Hydrogen is a sustainable clean energy source but current technologies for producing hydrogen rely on fossil fuels. Tokyo University of Science’s Associate Prof. Ohkawa’s team is interested in the production of hydrogen from sources like seawater and will make use of semiconductor materials and nanotechnology to do it without the use of fossil fuels. Prof. Arakawa and his team are developing new energy technologies based on lessons learnt from natural plant photosynthesis. Their research is centred on a new dye-sensitized solar cell and producing hydrogen from water using solar energy. Meanwhile Prof. Kudo is working on photocatalytic water splitting which many claim will be the ultimate chemical reaction for solving energy and environment issues. Tokyo University of Science’s research target is to develop new photocatalyst materials for water splitting and to achieve an artificial photosynthesis and solar hydrogen production from water. Another research team, is interested in finding out which genes are involved in bio-energy production such as bio-ethanol and hydrogen. Prof. Murakami plans to do this by developing a novel DNA microarray system.

Also on hydrogen energy, Tokai University has developed is a system of wind-solar hybrid energy storage system which stores electricity from wind and solar energy as hydrogen. The system is specially designed for use in a city which has fluctuating wind directions. The system produces electricity from the solar and wind sources which then decomposes water into oxygen and hydrogen gases using a solid polymer electrolyte. The hydrogen gas is stored in tanks containing nano-structured TiFe, hydrogen storage alloy and supplied to a fuel cell for powering LED lights at night.

Prof. Soai from Tokyo University of Science discovered the first asymmetric autocatalysis with amplification of enantiopurity in 1995. Prof. Soai and his team are currently interested in energy saving asymmetric catalysis.

COOLING TECHNOLOGY

Electronic devices produce heat and conventional cooling technology is struggling to remove the high heat flux generated by these systems. Prof. Suzuki from Tokyo University of Science is working on the next generation of cooling technology using micro bubbles while his colleague Prof. Tsujimoto is working on cooling systems with water mist sprayers.

SAILING

For sailors, Tokai University scientist have succeeded in a boat design which saves up to 50% of fuel by converting the ocean’s wave energy directly into thrust while reducing hull motion in the waves.

URBAN PLANNING

On issues related to urban transportation, Prof. Fukuda from Tokyo Tech showed their simulation system that can be used to analyse and evaluate impacts of transportation policy. Tokyo Tech’s simulation has already shown that Tokyo Metropolitan government upcoming plans may not ease pollution problems in downtown Tokyo as expected. The system known as ARTIST, (Atmospheric and Regional Traffic Integration: A Simulation System of Tokyo Tech) is the first to combine microscopic traffic simulator with meso-scale regional atmospheric simulator. This means the system is able to include data on microscopic and regional scale, useful for including microscopic particulate matter and regional atmospheric patterns.

INTELLECTUAL PROPERTY

Last but not least, the issue of Intellectual Property. Much has been said about the protection of intellectual property. Tokai University’s Prof Uchida believes this should a way of life. The Tokai University syllabus introduces the concept of Intellectual Property from kindergarten, through to primary, secondary and university level. They believe that respect for IP should start early on because it is one of the most important assets of society which fosters creativity and entrepreneurship, and therefore should be instilled in all levels of society. The Tokai IP Education model’s motto is “IP Education as Education in Creativity – to foster humanistic people who are creative and able to contribute to building a more affluent and peaceful society”

If you would like more information about the research, or to contact the universities, please email info@researchsea.com.

Dr Magdeline Pokar | ResearchSEA
Further information:
http://www.researchsea.com
http://www.sut.ac.jp/en/
http://www.titech.ac.jp/

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>