Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technology Improves Solar Collectors

30.10.2009
A new project between the LZH and several industrial partners aims at proving that laser joining of glass tubes has many advantages over the conventional flame method, and that it is more cost-efficient for the glass industry.

The sun is the energy source not only done for photovoltaic cells but also for thermal solar collectors. Whereas photovoltaic cells transform the sun's energy directly into electricity, solar collectors use a liquid which is heated by solar radiation. The thermal energy won during this process can be used for heating water in homes or in larger units for driving power generators.

In the heart of larger units are glass tubes filled with a liquid, which is heated by solar radiation. These glass tubes must be joined together, and according to the Laser Zentrum Hannover e.V. (LZH), laser technology is best suitable for this process. A new project between the LZH and several industrial partners aims at proving that laser joining of glass tubes has many advantages over the conventional flame method, and that it is more cost-efficient for the glass industry.

The disadvantages of the conventional flame technique can partly be compensated by trained staff, but it can also lead to product failure. During the joining process, impurities may occur in the joining zone, which cause considerable variations in the glass quality. Also, the heat input is difficult to regulate when using the flame technique. This is not the case with laser technology.

The advantages of laser joining of glass tubes are mainly temperature control, temperature distribution and in the automation. Additionally, in contrast to the flame joining, the laser joining technique prevents condensation and deposition in the glass tube, thus offering better quality. In combination with chemical resistant and robust borosilicate glass, breakage is significantly reduced, which in turn leads to a considerably lower reject rate.

The new system is a solid basis and starting point for all project partners and all the connected industrial branches in finding new application areas. This is the foundation for profitable industrial use.

The project "Lafuelsol" is funded by the German Federal Ministry of Education and Research (BMBF). The project organization is carried out by the Karlsruhe Institute of Technology, division Production and Manufacturing Technologies.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.laser-zentrum-hannover.de/en/
http://www.lzh.de

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>