Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Labs characterize carbon for batteries

15.07.2014

Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes

Lithium-ion batteries could benefit from a theoretical model created at Rice University and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes.


New work by scientists at Lawrence Livermore National Laboratory and Rice University details the binding properties of lithium ions to various types of carbon that may be used for lithium-ion batteries. The “universal descriptor” they found has the potential to speed the development of materials for commercialization. (Credit: Yuanyue Liu/Rice University)

The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material’s quantum capacitance (the ability of the material to absorb charge) and the material’s absolute Fermi level, which determines how many lithium ions may bond to the electrodes.

Subtle changes in the structure, chemistry and shape of an electrode can significantly alter how strongly lithium ions bond to it and affect a battery’s capacity, voltage and energy density. The researchers found a universal correlation between these properties and a simple quantity they called the “states-filling work”  that should allow scientists to fine-tune electrodes.

The research appears in the journal Physical Review Letters. Lawrence Livermore scientist Brandon Wood and Rice theoretical physicist Boris Yakobson led the study.

Fine-tuning becomes critically important as materials scientists test more 2-D materials like graphene and nanotubes for use as electrodes. The materials offer vast surface area for ions to bind to in a compact package, Yakobson said.

“This work emphasizes the role of quantum capacitance,” he said. “Capacitance in a battery is usually defined by the configuration of your electrodes; people think about this as the distance between the plates.

“But if the plates become very close and the electrodes and electrolyte are tight, then quantum capacitance becomes the limiting parameter.”

“The Fermi level of the electrode material is also important,” said Rice graduate student Yuanyue Liu, the paper’s lead author. “The lower it is, the stronger lithium will bind.”

Liu and Lawrence Livermore staff scientist Brandon Wood were looking for a “descriptor,” a characteristic that would capture the essential physics of interactions between lithium and a variety of carbon materials, including pristine, defective and strained graphene, planar carbon clusters, nanotubes, carbon edges and multilayer stacks.

“That descriptor turned out to be the ‘states-filling work’ – the work required to fill previously unoccupied electronic states within the electrode,” Liu said.

“Generally speaking, a descriptor is an intermediate property or parameter that doesn’t give you what you really want to know, but correlates well with the material’s final performance,” Yakobson said.

“The descriptor connects to properties that may be quite complex,” he said. “For instance, you can judge people’s physical strength by how tall they are or by weight. That’s easy to measure. It doesn’t exactly tell you how strong the person will be, but it gives you some idea.”

Based on the descriptor, the researchers were able to evaluate various carbon materials. Specifically, they found materials like defective or curved graphene were good candidates for anodes, as their energy profiles allowed more lithium ions to bind. Ultimately, their work suggested a set of binding guidelines for carbon anodes.

“These allow us to quickly evaluate material performance without doing electrochemical tests or expensive computations,” Liu said.

“The fact that our descriptor predicts the performance of such a wide variety of materials is surprising,” Wood said. “It means the underlying physics is really very similar, even if the structure, morphology, or chemistry differs from one candidate to the next. It’s really a very simple and elegant finding that could accelerate design and discovery.”

Yakobson noted the work is in line with the Materials Genome Initiative (MGI), which aims to double the speed and reduce the cost of developing advanced materials by providing these kinds of tools. Earlier this year, Rice’s George R. Brown School of Engineering hosted a workshop on the MGI initiative, one of four held around the country.

Yakobson is Rice’s Karl F. Hasselmann Professor of Materials Science and NanoEngineering, a professor of chemistry and a member of the Richard E. Smalley Institute for Nanoscale Science and Technology.

Lawrence Livermore National Laboratory and the Department of Energy supported the research.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice’s undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance.

David Ruth | Eurek Alert!

Further reports about: MGI batteries electrode electrodes graphene ions materials properties

More articles from Power and Electrical Engineering:

nachricht Energy from Sunlight: Further Steps towards Artificial Photosynthesis
24.06.2016 | Universität Basel

nachricht World's first 1,000-processor chip
20.06.2016 | University of California - Davis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Four newly-identified genes could improve rice

27.06.2016 | Agricultural and Forestry Science

Scientists begin modeling universe with Einstein's full theory of general relativity

27.06.2016 | Physics and Astronomy

Newly-discovered signal in the cell sets protein pathways to mitochondria

27.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>