Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Korean researchers demonstrate a new class of transparent, stretchable electrodes

31.05.2013
Ulsan National Institute of Science & Technology (UNIST) has demonstrated that a live rabbit could wear contact lenses fitted with inorganic light-emitting diode with no side effects. This new class of hybrid transparent and stretchable electrode paves the way for flexible displays, solar cells, and electronics.
UNIST scientists have combined graphene with silver nanowires to form a thin, transparent and stretchable electrode which overcome the weaknesses of each individual material, resulting in a new class of electrodes with widespread possible applications including picture taking and scanning using soft contact lenses.

Transparent electrodes have been widely used in things like touch screens, flat-screen TVs, solar cells and light-emitting devices. Commonly made from indium tin oxide(ITO), it is brittle and cracks thus losing functionality if flexed. It also degrades over time, and is expensive due to the limited quantities of indium metal.

As an alternative, the networks of randomly distributed mNWs have been considered as promising candidates for next-generation transparent electrodes, due to their low-cost, high-speed fabrication of transparent electrodes. However, the number of disadvantages of the mNW networks limited their integration into commercial devices. They have low breakdown voltage, typically high NW-NW junction resistance, high contact resistance between network and active materials, material instability and poor adhesion to plastic substrates.
Graphene is also well known as good a candidate for transparent electrode because of their unique electrical properties and high mechanical flexibility. However, scalable graphene synthesis methods for commercialization produces lower quality graphene with individual segments called grains which increases the electrical resistance at boundaries between these grains.

Silver nanowires, on the other hand, have high resistance because they are randomly oriented like a jumble of toothpicks facing in different directions. In this random orientation, there are many contact between nanowires, resulting in high resistance due to large junction resistance of nanowires. Due to these drawbacks, neither is good for conducting electricity, but a hybrid structure, combined from two materials, is.

The hybrid material presents a high electrical and optical performance with mechanical flexibility and stretchability for flexible electronics. The hybrid transparent electrode has a low “sheet resistance” and high transmittance. There’s almost no change in its resistance when bent and folded. Where the ITO is bent, its resistance increases significantly. Additionally the hybrid material preserve its electrical and optical properties against thermal oxidation condition

LED fitted soft eye contact lense

The graphene-mNW hybrid structure developed by the UNIST research team is a new class of electrodes and may soon find use in a variety of other applications. The research team demonstrated Inorganic light-emitting diode (ILED) devices fitted on a soft eye contact lens using the transparent, stretchable interconnects of the hybrid electrodes as an application example.

As an in vivo study, this contact lens was worn by a live rabbit eye for five hours and no abnormal behavior, such as bloodshot eye or the rubbing of eye areas were observed in the live rabbit. Wearing eye contact lenses, picture-taking and scanning, is not science fiction anymore.

The research was led by Jang-Ung Park, professor of the School of Nano-Bioscience and Chemical Engineering at UNIST. “We believe the hybridization between two-dimensional and one-dimensional nanomaterials presents a promising strategy toward flexible, wearable electronics and implantable biosensor devices, and indicate the substantial promise of future electronics,” said Prof. Park.

Journal information

Published online on May 23, 2013 in Nano Letters. (Title: High-Performance, Transparent and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures.)

Funding information

This work was supported by the National Research Foundation of Korea and the Ministry of Knowledge Economy through the Materials Original Technology Program.

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>