Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping the lights on

13.12.2013
UCSB mechanical engineer Igor Mezic finds a way to predict cascading power outages

A method of assessing the stability of large-scale power grids in real time could bring the world closer to its goal of producing and utilizing a smart grid. The algorithmic approach, developed by UC Santa Barbara professor Igor Mezic along with Yoshihiko Susuki from Kyoto University, can predict future massive instabilities in the power grid and make power outages a thing of the past.

"If we can get these instabilities under control, then people won't have to worry about losing power," said Mezic, who teaches in UCSB's Department of Mechanical Engineering, "And we can put in more fluctuating sources, like solar and wind."

While development of more energy efficient machines and devices and the emergence of alternative forms of energy give us reason to be optimistic for a greener future, the promise of sustainable, reliable energy is only as good as the infrastructure that delivers it. Conventional power grids, the system that still distributes most of our electricity today, were built for the demands of almost a century ago. As the demand for energy steadily rises, not only will the supply become inadequate under today's technology, its distribution will become inefficient and wasteful.

"Each individual component does not know what the collective state of affairs is," said Mezic. Current methods rely on a steady, abundant supply, producing enough energy to flow through the grid at all times, regardless of demand, he explained. However, should part of a grid already operating at capacity fail — say in times of disaster, attack or malfunction — widespread blackouts all over the system can occur.

"Everybody shuts down," Mezic said. The big surges of power left unregulated by the malfunctioning component can either overload and burn out other parts of the grid, or cause them to shut down to avoid damage, he explained. The result is a massive power outage and subsequent economic and physical damage. The Northeast Blackout of 2003 was one such event, affecting several U.S. states and part of Canada, crippling transportation, communication and industry.

One alternative to solve the situation could be to build more power plants to produce the steady supply to feed the grid and have the capacity to handle unpredictable failures, fluctuations and shutdowns. It's a solution that's costly both for the environment and for the checkbook.

However, the method developed by Mezic and partners promises to prevent the cascade of blackouts and their subsequent effects by monitoring the entire grid for early signs of failure, in real time. Called the Koopman Mode Analysis (KMA), it is a dynamical approach based on a concept related to chaos theory, and is capable of monitoring seemingly innocuous fluctuations in measured physical power flow. Using data from existing monitoring methods, like Supervisory Control And Data Acquisition (SCADA) and Phasor Measurement Units (PMUs) KMA can track power fluctuations against the greater landscape of the grid and predict emerging events. The result is the ability to prevent and control large-scale blackouts and the damage they can cause.

Additionally, this approach can also lead to wider development of, demand for and use of renewable sources of energy, said Mezic. Because energy from systems like wind, water and sun are weather-dependent, they tend to fluctuate naturally, and this ability to respond to fluctuations can dispel what reservations utilities may have about relying on them to a greater degree.

Mezic's research is published in the Institute of Electrical and Electronics Engineers journal Transactions of Power Systems. Other collaborators in Koopman Mode Analysis research include researchers from Princeton University, Tsinghua University in China and the Royal Institute of Technology in Sweden.

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>