Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping the lights on

13.12.2013
UCSB mechanical engineer Igor Mezic finds a way to predict cascading power outages

A method of assessing the stability of large-scale power grids in real time could bring the world closer to its goal of producing and utilizing a smart grid. The algorithmic approach, developed by UC Santa Barbara professor Igor Mezic along with Yoshihiko Susuki from Kyoto University, can predict future massive instabilities in the power grid and make power outages a thing of the past.

"If we can get these instabilities under control, then people won't have to worry about losing power," said Mezic, who teaches in UCSB's Department of Mechanical Engineering, "And we can put in more fluctuating sources, like solar and wind."

While development of more energy efficient machines and devices and the emergence of alternative forms of energy give us reason to be optimistic for a greener future, the promise of sustainable, reliable energy is only as good as the infrastructure that delivers it. Conventional power grids, the system that still distributes most of our electricity today, were built for the demands of almost a century ago. As the demand for energy steadily rises, not only will the supply become inadequate under today's technology, its distribution will become inefficient and wasteful.

"Each individual component does not know what the collective state of affairs is," said Mezic. Current methods rely on a steady, abundant supply, producing enough energy to flow through the grid at all times, regardless of demand, he explained. However, should part of a grid already operating at capacity fail — say in times of disaster, attack or malfunction — widespread blackouts all over the system can occur.

"Everybody shuts down," Mezic said. The big surges of power left unregulated by the malfunctioning component can either overload and burn out other parts of the grid, or cause them to shut down to avoid damage, he explained. The result is a massive power outage and subsequent economic and physical damage. The Northeast Blackout of 2003 was one such event, affecting several U.S. states and part of Canada, crippling transportation, communication and industry.

One alternative to solve the situation could be to build more power plants to produce the steady supply to feed the grid and have the capacity to handle unpredictable failures, fluctuations and shutdowns. It's a solution that's costly both for the environment and for the checkbook.

However, the method developed by Mezic and partners promises to prevent the cascade of blackouts and their subsequent effects by monitoring the entire grid for early signs of failure, in real time. Called the Koopman Mode Analysis (KMA), it is a dynamical approach based on a concept related to chaos theory, and is capable of monitoring seemingly innocuous fluctuations in measured physical power flow. Using data from existing monitoring methods, like Supervisory Control And Data Acquisition (SCADA) and Phasor Measurement Units (PMUs) KMA can track power fluctuations against the greater landscape of the grid and predict emerging events. The result is the ability to prevent and control large-scale blackouts and the damage they can cause.

Additionally, this approach can also lead to wider development of, demand for and use of renewable sources of energy, said Mezic. Because energy from systems like wind, water and sun are weather-dependent, they tend to fluctuate naturally, and this ability to respond to fluctuations can dispel what reservations utilities may have about relying on them to a greater degree.

Mezic's research is published in the Institute of Electrical and Electronics Engineers journal Transactions of Power Systems. Other collaborators in Koopman Mode Analysis research include researchers from Princeton University, Tsinghua University in China and the Royal Institute of Technology in Sweden.

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Power and Electrical Engineering:

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

nachricht Magic off the cuff
11.07.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>