Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kaneka and imec develop high-efficiency heterojunction silicon solar cells with copper electroplating

28.11.2011
At the 21st International Photovoltaic Science and Engineering Conference, held on November 28th – December 2nd in Fukuoka, Japan, Kaneka and imec present silver-free heterojunction silicon solar cells.

The results were obtained by applying copper electroplating technology, which was developed by Kaneka based on imec’s existing copper electroplating technology, A conversion efficiency of more than 21% was achieved (*) in 6-inch silicon substrates with an electroplated copper contact grid on top of the transparent conductive oxide layer.

Today, silver screen printing is the technology of choice for the realization of the top grid electrode in heterojunction silicon solar cells. The difficulty of lowering resistivity and thinning the metal line in silver screen printing prevents from achieving high efficiency and low cost. In the presented silver-free approach, the screen-printed silver is replaced by electroplated copper. Formation of top grid electrode with copper-electroplating in hetero-junction silicon solar cells is the world first result. Copper-electroplating is an economical and industry-proven process. This solution not only overcomes the disadvantages of the silver screen printing, but provides advantages such as enabling higher efficiencies and reducing fabrication costs.

These results showing beyond 21% conversion efficiency in heterojunction silicon solar cells based on imec’s copper electroplating know how were obtained in a bilateral collaboration between Kaneka Corporation and imec in Leuven (Belgium). Kaneka’s Photovoltaics European Laboratory is located at the imec campus in Leuven (Belgium), giving access to imec’s state-of-the-art PV infrastructure and enabling close interaction between imec and Kaneka researchers. The collaboration between Kaneka and imec comprises the improvement of Kaneka’s thin-film solar cells and the development of next-generation heterojunction cells.

(*) Measured in imec

http://www2.imec.be/be_en/press/imec-news/imeckanekaelectroplatingpv.html

About imec
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Kaneka
Kaneka Corporation was established in 1949 as a spin-off from the Kanegafuchi Spinning Co., Ltd. It is headquartered in Osaka, Japan and employs about 7,300 people worldwide (including consolidated subsidiaries). Kaneka’s activities span a broad spectrum of markets ranging from photovoltaics, plastics, EPS resins, chemicals and foodstuffs to pharmaceuticals, medical devices, electrical and electronic materials and synthetic fibers. Kaneka has subsidiaries in Belgium, the United States, Singapore, Malaysia, China, Australia and Vietnam.
Further information on Kaneka can be found at
http://www.kaneka.co.jp/kaneka-e/
Contact:
Hanne Degans, External Communications Officer, T: +32 16 28 17 69, Mobile: +32 486 065 175, Hanne.Degans@imec.be
Public Relations Office
Manger Yoshito Miyakawa
+81 66226 5019

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.kaneka.co.jp/en

Further reports about: Photovoltaic building block electronic material solar cells

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>