Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State engineers helping develop energy-harvesting radios

18.12.2008
If changing the batteries in the remote control or smoke detector seems like a chore, imagine having to change hundreds of batteries in sensors scattered across a busy bridge.

That's why Kansas State University engineers are helping a semiconductor manufacturer implement its idea of an energy-harvesting radio. It could transmit important data -- like stress measurements on a bridge, for instance -- without needing a change of batteries, ever.

Bill Kuhn, K-State professor of electrical and computer engineering, and Xiaohu Zhang, master's student in electrical engineering, are developing an energy-harvesting radio for Peregrine Semiconductor, a San Diego-based integrated circuit manufacturer.

"This type of radio technology may exist in your house, for instance if you have a temperature sensor outside that radios data to a display inside," Kuhn said. "But those devices need to have their batteries changed. This radio doesn't."

Peregrine Semiconductor is looking at possible applications for the technology. This could include monitoring stress, temperature and pressure on bridges and other structures. Ron Reedy, Peregrine's chief technical officer, said that fulfilling this vision of autonomous sensors requires highly integrated, low power radio chips -- exactly the kind that K-State and Peregrine have demonstrated to NASA's Jet Propulsion Laboratory on Peregrine's trademarked UltraCMOS silicon-on-sapphire technology.

Meanwhile, the K-State engineers are looking at the design challenges of a radio system like this. Kuhn and Zhang have been working on the project for a little more than a year. They are creating a demonstration to test how far the signals can travel from the sensors.

Zhang constructed a demonstration board using solar cells from inexpensive calculators to power the radio. The board has capacitors that capture and store the light energy to power the radio without a battery. Although this prototype captures and stores light energy, Kuhn said that energy-harvesting radios could be powered by a number of different ways, including by electrochemical, mechanical or thermal energy.

The demonstration board that Zhang created includes a microprocessor to store data before it's transmitted via radio. The radio used is the "Mars chip" that Kuhn helped develop in a successful project he and a team from K-State, Cal Tech's Jet Propulsion Laboratory and Peregrine Semiconductor did for NASA. They developed a micro transceiver to use on Mars rovers and scouts. In 2007, the work was published in Proceedings of the Institute of Electrical and Electronics Engineers.

In this way, Kuhn said the energy-harvesting radio they are working on now is an example of a NASA spinoff -- that is, technology developed for space exploration that can be used here on Earth.

When the stored data is ready to be transmitted, the radio sends out a data-burst. In Zhang's model, this happens every five seconds. It may just sound like a "blip," but that burst contains data that a computer can translate into meaningful information, such as telling an engineer the stress or strain on the underside of a bridge. Kuhn said that it's kind of like sending a text message from one cell phone to another: After data are transmitted through the air, the recipient's cell phone turns that data back into text that can be understood.

Kuhn and Zhang are stepping in to perfect the radio system design. This includes determining which frequencies to use based on how the environment affects radio waves indoors versus outdoors. They also have to look at how noise and other factors may limit the sensitivity of the receiver that's getting the data from all of the sensors.

Because these sensors save data in their microprocessors, Kuhn and Zhang are working on timing and wake-up commands that tell the sensors when to send the stored information to the receiver. Through engineering analysis, they are determining tradeoffs between power requirements, data-rate and transmission range issues.

Kuhn and Zhang will present research on the radio communication aspects of the project at the Radio and Wireless Symposium in January 2009.

Bill Kuhn | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>