Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State engineers helping develop energy-harvesting radios

18.12.2008
If changing the batteries in the remote control or smoke detector seems like a chore, imagine having to change hundreds of batteries in sensors scattered across a busy bridge.

That's why Kansas State University engineers are helping a semiconductor manufacturer implement its idea of an energy-harvesting radio. It could transmit important data -- like stress measurements on a bridge, for instance -- without needing a change of batteries, ever.

Bill Kuhn, K-State professor of electrical and computer engineering, and Xiaohu Zhang, master's student in electrical engineering, are developing an energy-harvesting radio for Peregrine Semiconductor, a San Diego-based integrated circuit manufacturer.

"This type of radio technology may exist in your house, for instance if you have a temperature sensor outside that radios data to a display inside," Kuhn said. "But those devices need to have their batteries changed. This radio doesn't."

Peregrine Semiconductor is looking at possible applications for the technology. This could include monitoring stress, temperature and pressure on bridges and other structures. Ron Reedy, Peregrine's chief technical officer, said that fulfilling this vision of autonomous sensors requires highly integrated, low power radio chips -- exactly the kind that K-State and Peregrine have demonstrated to NASA's Jet Propulsion Laboratory on Peregrine's trademarked UltraCMOS silicon-on-sapphire technology.

Meanwhile, the K-State engineers are looking at the design challenges of a radio system like this. Kuhn and Zhang have been working on the project for a little more than a year. They are creating a demonstration to test how far the signals can travel from the sensors.

Zhang constructed a demonstration board using solar cells from inexpensive calculators to power the radio. The board has capacitors that capture and store the light energy to power the radio without a battery. Although this prototype captures and stores light energy, Kuhn said that energy-harvesting radios could be powered by a number of different ways, including by electrochemical, mechanical or thermal energy.

The demonstration board that Zhang created includes a microprocessor to store data before it's transmitted via radio. The radio used is the "Mars chip" that Kuhn helped develop in a successful project he and a team from K-State, Cal Tech's Jet Propulsion Laboratory and Peregrine Semiconductor did for NASA. They developed a micro transceiver to use on Mars rovers and scouts. In 2007, the work was published in Proceedings of the Institute of Electrical and Electronics Engineers.

In this way, Kuhn said the energy-harvesting radio they are working on now is an example of a NASA spinoff -- that is, technology developed for space exploration that can be used here on Earth.

When the stored data is ready to be transmitted, the radio sends out a data-burst. In Zhang's model, this happens every five seconds. It may just sound like a "blip," but that burst contains data that a computer can translate into meaningful information, such as telling an engineer the stress or strain on the underside of a bridge. Kuhn said that it's kind of like sending a text message from one cell phone to another: After data are transmitted through the air, the recipient's cell phone turns that data back into text that can be understood.

Kuhn and Zhang are stepping in to perfect the radio system design. This includes determining which frequencies to use based on how the environment affects radio waves indoors versus outdoors. They also have to look at how noise and other factors may limit the sensitivity of the receiver that's getting the data from all of the sensors.

Because these sensors save data in their microprocessors, Kuhn and Zhang are working on timing and wake-up commands that tell the sensors when to send the stored information to the receiver. Through engineering analysis, they are determining tradeoffs between power requirements, data-rate and transmission range issues.

Kuhn and Zhang will present research on the radio communication aspects of the project at the Radio and Wireless Symposium in January 2009.

Bill Kuhn | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>