Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Island channel could power about half of Scotland, studies show

Renewable tidal energy sufficient to power about half of Scotland could be harnessed from a single stretch of water off the north coast of the country, engineers say.

Researchers have completed the most detailed study yet of how much tidal power could be generated by turbines placed in the Pentland Firth, between mainland Scotland and Orkney, and estimate 1.9 gigawatts (GW) could be available.

The in-depth assessment by engineers at the Universities of Oxford and Edinburgh offers valuable insights into how to develop and regulate this clean energy resource effectively.

The Pentland Firth is a prime candidate to house marine power projects because of its tidal currents, which are among the fastest in the British Isles.

Engineers say that their study improves on previous estimates of the generating capacity of turbines embedded in the Firth – ranging from 1 to 18 GW – which were too simplistic or based on inappropriate models. Researchers calculated that as much as 4.2 GW could be captured, but because tidal turbines are not 100 per cent efficient, they say that 1.9 GW is a more realistic target.

To exploit the Firth's full potential, turbines would need to be located across the entire width of the channel. In order to minimise the impacts on sea life and shipping trade, a number of individual sites have been identified for development by the UK Crown Estate, which will lease these sites to tidal energy firms.

Researchers have pinpointed locations where turbines would need to be positioned for the Firth to meet its full energy production potential.

The research was commissioned and funded as part of the Energy Technologies Institute's Performance Assessment of Wave and Tidal Array Systems project (PerAWAT).

Professor Alistair Borthwick, of the School of Engineering at the University of Edinburgh, who worked on the research, said: "Our research builds on earlier studies by analysing the interactions between turbines and the tides more closely. This is a more accurate approach than was used in the early days of tidal stream power assessment, and should be useful in calculating how much power might realistically be recoverable from the Pentland Firth."

Professor Guy Houlsby of the Department of Engineering Science, University of Oxford, said: "The UK enjoys potentially some of the best tidal resources worldwide, and if we exploit them wisely they could make an important contribution to our energy supply. These studies should move us closer towards the successful exploitation of the tides."

Catriona Kelly | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht New polymer creates safer fuels
02.10.2015 | California Institute of Technology

nachricht Making batteries with portabella mushrooms
30.09.2015 | University of California - Riverside

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>