Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Island channel could power about half of Scotland, studies show

20.01.2014
Renewable tidal energy sufficient to power about half of Scotland could be harnessed from a single stretch of water off the north coast of the country, engineers say.

Researchers have completed the most detailed study yet of how much tidal power could be generated by turbines placed in the Pentland Firth, between mainland Scotland and Orkney, and estimate 1.9 gigawatts (GW) could be available.

The in-depth assessment by engineers at the Universities of Oxford and Edinburgh offers valuable insights into how to develop and regulate this clean energy resource effectively.

The Pentland Firth is a prime candidate to house marine power projects because of its tidal currents, which are among the fastest in the British Isles.

Engineers say that their study improves on previous estimates of the generating capacity of turbines embedded in the Firth – ranging from 1 to 18 GW – which were too simplistic or based on inappropriate models. Researchers calculated that as much as 4.2 GW could be captured, but because tidal turbines are not 100 per cent efficient, they say that 1.9 GW is a more realistic target.

To exploit the Firth's full potential, turbines would need to be located across the entire width of the channel. In order to minimise the impacts on sea life and shipping trade, a number of individual sites have been identified for development by the UK Crown Estate, which will lease these sites to tidal energy firms.

Researchers have pinpointed locations where turbines would need to be positioned for the Firth to meet its full energy production potential.

The research was commissioned and funded as part of the Energy Technologies Institute's Performance Assessment of Wave and Tidal Array Systems project (PerAWAT).

Professor Alistair Borthwick, of the School of Engineering at the University of Edinburgh, who worked on the research, said: "Our research builds on earlier studies by analysing the interactions between turbines and the tides more closely. This is a more accurate approach than was used in the early days of tidal stream power assessment, and should be useful in calculating how much power might realistically be recoverable from the Pentland Firth."

Professor Guy Houlsby of the Department of Engineering Science, University of Oxford, said: "The UK enjoys potentially some of the best tidal resources worldwide, and if we exploit them wisely they could make an important contribution to our energy supply. These studies should move us closer towards the successful exploitation of the tides."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>