Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISFH achieves 20.2% record module efficiency for large-area PV modules with PERC solar cells

20.01.2016

The Institute for Solar Energy Research Hamelin increases the module efficiency for large-area solar modules with industrial silicon-based PERC solar cells to a record value of 20.2% with a power of 303.2W. Thereby, the ISFH surpasses the former module record efficiency of 19.5% for industrial-type modules with p-type silicon solar cells and screen-printed metallization.

The Institute for Solar Energy Research Hamelin (ISFH), an affiliated institute of the “Leibniz Universität Hannover”, increases the module efficiency for large-area solar modules with industrial silicon-based PERC solar cells to a record value of 20.2% with a power of 303.2W, which was confirmed in an independent measurement by the TÜV Rheinland.


Close-up of the high-efficient PV module. The bright stripes between and on top of the cells arise from light reflection by the high-reflective cell interconnectors and the space between solar cells.

ISFH

Thereby, the ISFH surpasses the former module record efficiency of 19.5% for industrial-type modules with p-type silicon solar cells and screen-printed metallization.

The results were achieved within the project “Prozessplattform und Verlustanalyse für klimastabile hocheffiziente Photovoltaikmodule mit kristallinen PERC-Si-Solarzellen” (PERC-2-Module) funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

The module consists of 120 halved solar cells that feature an average efficiency of 20.8%. By using the half-cell design the current of the cell strings is reduced resulting in a significant reduction of the series resistance losses. The distance between the cells is reduced to a practical minimum to increase the module efficiency.

The resultant module area without frame is 1.501 m2. In order to use light hitting the cell interconnects and the space between the solar cells for current generation, high-reflective and structured materials are utilized which guide the light onto the solar cells active surface.

“This record efficiency is the result of a closely joined development of the PERC solar cell technology on the one hand and of the high-efficient module processes at ISFH on the other hand”, explains Dr. Henning Schulte-Huxel, the head of the research project PERC-2-Module.

The p-type PERC solar cells were fabricated using an industrial screen printing process for front and rear side. These cells developed at ISFH are optimized for the operation in modules and show no potential-induced degradation.

This was confirmed in numerous internal tests of the solar cells using the conditions of 85% relative humidity, a temperature of 85°C, and an applied voltage of 1000V for 1000h. This stress surpassed the standard test by more than ten times.

About 80% of all commercially-produced solar cells consist of p-type crystalline silicon wafers in combination with a screen printed metallization. Since the material cost during module manufacturing and especially the system cost grow with the module area, the demonstrated optimization of the module efficiency is highly relevant for the reduction of the cost of electricity generated by photovoltaics.

Dr. Roland Goslich | idw - Informationsdienst Wissenschaft
Further information:
http://www.isfh.de/

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>