Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Researchers Feed Pigs, Chickens High-Protein Fungus Grown on Ethanol Leftovers

16.08.2012
Initial studies show a fungus grown in the leftovers of ethanol production could be a good energy feed for pigs and chickens.

In separate feeding trials, nursery pigs and chickens have eaten high-protein fungi that Hans van Leeuwen and other Iowa State University researchers have produced in a pilot plant that converts ethanol leftovers into food-grade fungi. The production process also cleans some of the water used to produce ethanol, boosting the amount of water that can be recycled back into biofuel production and saving energy on water cleanup and co-product recovery.

So far in the feeding trials, researchers have found pig performance wasn’t impacted when dried fungi were substituted for corn or soybean meal, said Nicholas Gabler, an assistant professor of animal science. Researchers are still studying the effects of the feed on amino acid availability, tissue growth, and intestinal health.

The fungi produce a high-energy feed for chickens, said Mike Persia, an assistant professor of animal science. He said more studies need to be done, “but generally I think there’s some value there.”

The fungi-production process was developed by a research team led by van Leeuwen, a professor of civil, construction and environmental engineering. The process has two patents pending and has won several major awards – most recently it was named the global grand winner of the International Water Association’s 2012 Project Innovation Awards in Applied Research.

“It’s a great feeling,” van Leeuwen said of the latest award. “The International Water Association is the top water quality organization in the world. We were up against multi-million dollar projects and we’ve been working on a shoestring. To get this is as gratifying as winning an Olympic medal.”

Van Leeuwen, who was named R&D Magazine’s 2009 Innovator of the Year, and the research team have been working on their “MycoMeal” process for several years. It began as an idea to improve the dry-grind process used to produce ethanol from corn.

Here’s how the process works:

For every gallon of ethanol produced, there are about five gallons of leftovers known as stillage. The stillage contains solids and other organic material. Most of the solids are removed by centrifugation and dried into distillers dried grains that are sold as livestock feed, primarily for cattle.

The remaining liquid, known as thin stillage, still contains some solids, a variety of organic compounds and enzymes. Because the compounds and solids can interfere with ethanol production, only about 50 percent of thin stillage can be recycled back into biofuel production. The rest is evaporated and blended with distillers dried grains.

The Iowa State researchers add fungus (Rhizopus microsporus) to the thin stillage and it feeds and grows into easily harvested pellets in less than a day – van Leeuwen calls it "lightning-speed farming." The fungus removes about 60 percent of the organic material and most of the solids, allowing the water and enzymes in the thin stillage to be recycled back into production.

The fungus is then harvested and dried as animal feed that's rich in protein, certain essential amino acids, polyunsaturated oils and other nutrients. It can be blended with distillers dried grains to boost its value as a livestock feed and make it more suitable for feeding hogs and chickens. And van Leeuwen hopes the fungal product could one day be a low-cost nutritional supplement for people.

Van Leeuwen said the production technology can save United States ethanol producers up to $800 million a year in energy costs. He also said the technology can produce ethanol co-products worth another $800 million or more per year, depending on how it is used and marketed.

Researchers have developed a 400-gallon pilot plant at the Iowa Energy Center’s Biomass Energy Conversion facility in Nevada to test and refine the process. They’re producing a ton of the fungi this year for the animal feeding trials. (“That’s no minor feat for a pilot plant,” van Leeuwen said.)

There has been some commercial interest in the process, van Leeuwen said.

The project has been supported by a three-year, $450,000 grant from the Iowa Energy Center and a Smithfield grant from the Office of the Iowa Attorney General. Lincolnway Energy of Nevada; Cellencor Inc. of the Iowa State University Research Park; and Iowa State's Center for Crops Utilization Research and BioCentury Research Farm are also supporting the project.

In addition to van Leeuwen, Gabler and Persia, the project’s research team includes Mary Rasmussen, a former post-doctoral research associate; Duygu Ozsoy, a current post-doctoral research associate in civil, construction and environmental engineering; Daniel Erickson and Christopher Koza, graduate students in civil, construction and environmental engineering; students Alexandra Bruns, Scott Karagiorgas, Weston Kleinert, Jessica Maciel and Shashank Ravi; and Debjani Mitra, a doctoral graduate of Iowa State, now a post-doctoral fellow at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory in California.

With this summer’s drought and concerns about high prices for corn, van Leeuwen said there could be new interest in transferring the technology to the ethanol industry.

“It’s now more important,” van Leeuwen said, “to have better co-products of ethanol production.”

Contacts:
Hans van Leeuwen, Civil, Construction and Environmental Engineering, 515-294-5251, leeuwen@iastate.edu
Nicholas Gabler, Animal Science, 515-294-7370, ngabler@iastate.edu
Mike Persia, Animal Science, 515-294-2700, mpersia@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Hans van Leeuwen | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>