Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Researchers Feed Pigs, Chickens High-Protein Fungus Grown on Ethanol Leftovers

16.08.2012
Initial studies show a fungus grown in the leftovers of ethanol production could be a good energy feed for pigs and chickens.

In separate feeding trials, nursery pigs and chickens have eaten high-protein fungi that Hans van Leeuwen and other Iowa State University researchers have produced in a pilot plant that converts ethanol leftovers into food-grade fungi. The production process also cleans some of the water used to produce ethanol, boosting the amount of water that can be recycled back into biofuel production and saving energy on water cleanup and co-product recovery.

So far in the feeding trials, researchers have found pig performance wasn’t impacted when dried fungi were substituted for corn or soybean meal, said Nicholas Gabler, an assistant professor of animal science. Researchers are still studying the effects of the feed on amino acid availability, tissue growth, and intestinal health.

The fungi produce a high-energy feed for chickens, said Mike Persia, an assistant professor of animal science. He said more studies need to be done, “but generally I think there’s some value there.”

The fungi-production process was developed by a research team led by van Leeuwen, a professor of civil, construction and environmental engineering. The process has two patents pending and has won several major awards – most recently it was named the global grand winner of the International Water Association’s 2012 Project Innovation Awards in Applied Research.

“It’s a great feeling,” van Leeuwen said of the latest award. “The International Water Association is the top water quality organization in the world. We were up against multi-million dollar projects and we’ve been working on a shoestring. To get this is as gratifying as winning an Olympic medal.”

Van Leeuwen, who was named R&D Magazine’s 2009 Innovator of the Year, and the research team have been working on their “MycoMeal” process for several years. It began as an idea to improve the dry-grind process used to produce ethanol from corn.

Here’s how the process works:

For every gallon of ethanol produced, there are about five gallons of leftovers known as stillage. The stillage contains solids and other organic material. Most of the solids are removed by centrifugation and dried into distillers dried grains that are sold as livestock feed, primarily for cattle.

The remaining liquid, known as thin stillage, still contains some solids, a variety of organic compounds and enzymes. Because the compounds and solids can interfere with ethanol production, only about 50 percent of thin stillage can be recycled back into biofuel production. The rest is evaporated and blended with distillers dried grains.

The Iowa State researchers add fungus (Rhizopus microsporus) to the thin stillage and it feeds and grows into easily harvested pellets in less than a day – van Leeuwen calls it "lightning-speed farming." The fungus removes about 60 percent of the organic material and most of the solids, allowing the water and enzymes in the thin stillage to be recycled back into production.

The fungus is then harvested and dried as animal feed that's rich in protein, certain essential amino acids, polyunsaturated oils and other nutrients. It can be blended with distillers dried grains to boost its value as a livestock feed and make it more suitable for feeding hogs and chickens. And van Leeuwen hopes the fungal product could one day be a low-cost nutritional supplement for people.

Van Leeuwen said the production technology can save United States ethanol producers up to $800 million a year in energy costs. He also said the technology can produce ethanol co-products worth another $800 million or more per year, depending on how it is used and marketed.

Researchers have developed a 400-gallon pilot plant at the Iowa Energy Center’s Biomass Energy Conversion facility in Nevada to test and refine the process. They’re producing a ton of the fungi this year for the animal feeding trials. (“That’s no minor feat for a pilot plant,” van Leeuwen said.)

There has been some commercial interest in the process, van Leeuwen said.

The project has been supported by a three-year, $450,000 grant from the Iowa Energy Center and a Smithfield grant from the Office of the Iowa Attorney General. Lincolnway Energy of Nevada; Cellencor Inc. of the Iowa State University Research Park; and Iowa State's Center for Crops Utilization Research and BioCentury Research Farm are also supporting the project.

In addition to van Leeuwen, Gabler and Persia, the project’s research team includes Mary Rasmussen, a former post-doctoral research associate; Duygu Ozsoy, a current post-doctoral research associate in civil, construction and environmental engineering; Daniel Erickson and Christopher Koza, graduate students in civil, construction and environmental engineering; students Alexandra Bruns, Scott Karagiorgas, Weston Kleinert, Jessica Maciel and Shashank Ravi; and Debjani Mitra, a doctoral graduate of Iowa State, now a post-doctoral fellow at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory in California.

With this summer’s drought and concerns about high prices for corn, van Leeuwen said there could be new interest in transferring the technology to the ethanol industry.

“It’s now more important,” van Leeuwen said, “to have better co-products of ethanol production.”

Contacts:
Hans van Leeuwen, Civil, Construction and Environmental Engineering, 515-294-5251, leeuwen@iastate.edu
Nicholas Gabler, Animal Science, 515-294-7370, ngabler@iastate.edu
Mike Persia, Animal Science, 515-294-2700, mpersia@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Hans van Leeuwen | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>