Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Engineers Design, Test Taller, High-Strength Concrete Towers for Wind Turbines

16.05.2013
Grant Schmitz, eyes inches from a 6.5-by-12-foot panel of ultra-high performance concrete, studied the smooth surface for tiny cracks. He and other research engineers carefully marked every one with black markers.

Schmitz, an Iowa State graduate student of civil, construction and environmental engineering, and Sri Sritharan, Iowa State’s Wilson Engineering Professor and leader of the College of Engineering’s wind energy initiative, were trying to answer some basic questions about using concrete panels and columns to build wind turbine towers using prefabricated, easily transportable components.

Could assembled concrete towers be a viable alternative to the steel towers now used for wind turbines? Could concrete towers be a practical way to raise turbine towers from today’s 80 meters to the steadier winds at 100 meters and taller? Which of three ways to connect the columns and panels works best for wind turbine towers?

“We have definitely reached the limits of steel towers,” Sritharan said. “Increasing the steel tower by 20 meters will require significant cost increases and thus the wind energy industry is starting to say, ‘Why don’t we go to concrete?’”

And so, Sritharan and Schmitz watched as Doug Wood, engineering specialist and manager of Iowa State’s Structural Engineering Research Laboratory, typed in the commands for the lab’s hydraulic equipment to push or pull with bigger loads on a full-size test segment of a 100-meter concrete wind turbine tower. With each increase, the segment creaked and thumped.

The goal was to test three column-and-panel segments for the expected loads at the top of a turbine tower. The engineers wanted to see if the segments could handle 150,000 pounds of load, 20 percent over the extreme load at that height.

Sritharan and Schmitz designed the concrete towers to be built in hexagon-shaped segments, with six panels connected to six columns. They tested three methods to connect the panels and columns: bolted connections; horizontal, prestressed connections with cables running through the tower pieces; and a grout connection using ultra-high performance concrete poured into the joints between panels and columns. In addition, the concrete columns were attached to a foundation using prestressing methods.

All three versions of the test segments withstood 150,000 pounds of lateral load. The researchers also tested the segment with the grout connections under 170,000 pounds of load, 36 percent beyond extreme load. In each test, the segments performed well with no sign of distress at the operational load of 100,000 pounds. Some distress to the test segments was visible at the extreme load and beyond.

“Panel cracking was expected at very high loads and will be closed upon removal of the load,” Sritharan said. “This can also be avoided if this is requested by the industry.”

After all the testing, Schmitz said, “I definitely think we’re getting close to being able to use this technology in the industry.”

The concrete tower design offers several advantages over today’s steel towers:
• increasing steel’s 20-year tower life by using ultra-high performance and high-strength concrete
• easier transportation because pieces are small enough for standard trucking
• precast concrete industry is established across the country
• less reliance on imported steel for turbine towers
• smaller precast pieces can be assembled on site in multiple ways
• the concept is versatile and towers can be tailored for any turbine size or even a height beyond 100 meters.

“What we have shown is that this system can potentially be deployed to a 100-meter height for a 2.5 to 3 megawatt system,” Sritharan said.

Moving from 80- to 100-meter towers is important for wind energy producers.

Sritharan said wind conditions at 100 meters are steadier and less turbulent. Taller towers also allow for longer turbine blades. Studies indicate all of that can increase energy production by 15 percent.

Sritharan said as turbine size increases, the need for taller towers will be inevitable.

“A lot of people are talking about taller, concrete wind turbine towers,” he said. “And we’ve already established a new versatile concept with multiple construction options.”

Sritharan said the studies of concrete turbine towers will continue at Iowa State. The project has been supported, in part, by a $109,000 grant from the Grow Iowa Values Fund, a state economic-development program. Industry partners in the experimental program are Clipper Windpower, a company based in Carpinteria, Calif., with a turbine design and manufacturing facility in Cedar Rapids; Lafarge North America Inc. of Calgary, Alberta, Canada; and Coreslab Structures (OMAHA) Inc. of Bellevue, Neb.

And Schmitz, who’s describing the project for his master’s thesis, could breathe a little easier after the successful testing.

“There is a lot of preparation for this,” he said. “We started coordinating the tests in August. We had to arrange for the precast and transportation and assembly through the fall. It’s definitely a relief when you see it handling the capacity it has to meet.”

Sri Sritharan, Civil, Construction and Environmental Engineering; Wind Energy Initiative, 515-294-5238, sri@iastate.edu
Grant Schmitz, Civil, Construction and Environmental Engineering, 712-304-4937, gschmitz@iastate.edu

Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>