Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa Power Fund helps Iowa State establish Wind Energy Manufacturing Laboratory

14.09.2009
It’s not easy to make the machines that convert wind to electricity.

Just consider the turbine blades that spin in the wind: a single blade can be 40 to 50 meters long and 12,000 to 15,000 pounds. It has to be built within millimeters of specifications. It has to be built to withstand 20 years of harsh conditions in the field. And it has to be built to handle speeds up to 200 miles per hour at the tip.

Iowa State University researchers are working with researchers from TPI Composites, a Scottsdale, Ariz.-based company that operates a turbine blade factory in Newton; and the U.S. Department of Energy’s Sandia National Laboratories in Albuquerque, N.M., to improve the process currently used to manufacture turbine blades.

The researchers’ work is supported by a three-year, $6.3 million project called the “Advanced Manufacturing Innovation Initiative.” One third of the project’s funding is from the Iowa Power Fund, a state program to advance energy innovation and independence. TPI Composites and the U.S. Department of Energy are also providing equal shares of funding.

The grant will allow Iowa State to establish a Wind Energy Manufacturing Laboratory on campus. The lab will feature the work of four faculty researchers: Matt Frank, Frank Peters and John Jackman, all associate professors of industrial and manufacturing systems engineering, and Vinay Dayal, an associate professor of aerospace engineering. The grant will also support the research of five graduate students and several undergraduates.

The researchers’ goal is to develop new, low-cost manufacturing systems that could improve the productivity of turbine blade factories by as much as 35 percent.

“The current manufacturing methods are very labor intensive,” Jackman said. “We need to improve throughput – we need to get more blades produced every week in order for it to be economical to continue to produce wind energy components in the United States.”

Peters said possible manufacturing improvements include developments in automation and quality control.

Peters said Iowa State’s new lab will initially work with smaller versions of the molds used to manufacture fiberglass turbine blades. The lab will allow the researchers to study blade manufacturing in a controlled setting while they look for ways to boost efficiency. Eventually, the lab could also study the manufacturing of wind towers, the nacelles that sit atop the towers, gearboxes and other wind energy components.

Dayal, who’s also a faculty associate with Iowa State’s Center for Nondestructive Evaluation, said the lab will also look at developing new ways for manufacturers to inspect blades without taking them apart. Faster, better inspections are another way to improve factory efficiency and blade reliability.

The researchers said Iowa State is uniquely positioned to study wind energy manufacturing. Iowa, which has an installed wind energy capacity of 2,790 megawatts, is second in the country in wind power production. And Iowa is one of only two states that are home to manufacturing facilities for wind energy turbines, blades and towers.

“With this project,” the researchers wrote in a project summary, “Iowa State University’s College of Engineering will become one of the leading academic institutions working on wind energy manufacturing.”

But there’s more at stake here.

“This project is all about making wind energy a reality,” Frank said. “How do we make an impact on the U.S. energy profile? To do that, we have to develop manufacturing technologies that can economically make a lot of these components.”

About TPI Composites Inc.
TPI Composites is a Scottsdale, Ariz.-based leading blade supplier to the wind energy movement. TPI delivers high-quality, cost-effective composite solutions through long-term agreements with the industry’s leading manufacturers, including GE Energy and Mitsubishi Power Systems. TPI operates factories throughout the U.S., Mexico and China. For more information, see www.tpicomposites.com.
About Sandia National Laboratories
Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness. For more information, see www.sandia.gov/index.html.
Contacts:
Matt Frank, Industrial and Manufacturing Systems Engineering, (515) 294-0389, mfrank@iastate.edu
Frank Peters, Industrial and Manufacturing Systems Engineering, (515) 294-3855, fpeters@iastate.edu
Vinay Dayal, Aerospace Engineering, (515) 294-0720, vdayal@iastate.edu
John Jackman, Industrial and Manufacturing Systems Engineering, (515) 294-0126, jkj@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.sandia.gov/index.html
http://www.tpicomposites.com
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>