Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa Power Fund helps Iowa State establish Wind Energy Manufacturing Laboratory

14.09.2009
It’s not easy to make the machines that convert wind to electricity.

Just consider the turbine blades that spin in the wind: a single blade can be 40 to 50 meters long and 12,000 to 15,000 pounds. It has to be built within millimeters of specifications. It has to be built to withstand 20 years of harsh conditions in the field. And it has to be built to handle speeds up to 200 miles per hour at the tip.

Iowa State University researchers are working with researchers from TPI Composites, a Scottsdale, Ariz.-based company that operates a turbine blade factory in Newton; and the U.S. Department of Energy’s Sandia National Laboratories in Albuquerque, N.M., to improve the process currently used to manufacture turbine blades.

The researchers’ work is supported by a three-year, $6.3 million project called the “Advanced Manufacturing Innovation Initiative.” One third of the project’s funding is from the Iowa Power Fund, a state program to advance energy innovation and independence. TPI Composites and the U.S. Department of Energy are also providing equal shares of funding.

The grant will allow Iowa State to establish a Wind Energy Manufacturing Laboratory on campus. The lab will feature the work of four faculty researchers: Matt Frank, Frank Peters and John Jackman, all associate professors of industrial and manufacturing systems engineering, and Vinay Dayal, an associate professor of aerospace engineering. The grant will also support the research of five graduate students and several undergraduates.

The researchers’ goal is to develop new, low-cost manufacturing systems that could improve the productivity of turbine blade factories by as much as 35 percent.

“The current manufacturing methods are very labor intensive,” Jackman said. “We need to improve throughput – we need to get more blades produced every week in order for it to be economical to continue to produce wind energy components in the United States.”

Peters said possible manufacturing improvements include developments in automation and quality control.

Peters said Iowa State’s new lab will initially work with smaller versions of the molds used to manufacture fiberglass turbine blades. The lab will allow the researchers to study blade manufacturing in a controlled setting while they look for ways to boost efficiency. Eventually, the lab could also study the manufacturing of wind towers, the nacelles that sit atop the towers, gearboxes and other wind energy components.

Dayal, who’s also a faculty associate with Iowa State’s Center for Nondestructive Evaluation, said the lab will also look at developing new ways for manufacturers to inspect blades without taking them apart. Faster, better inspections are another way to improve factory efficiency and blade reliability.

The researchers said Iowa State is uniquely positioned to study wind energy manufacturing. Iowa, which has an installed wind energy capacity of 2,790 megawatts, is second in the country in wind power production. And Iowa is one of only two states that are home to manufacturing facilities for wind energy turbines, blades and towers.

“With this project,” the researchers wrote in a project summary, “Iowa State University’s College of Engineering will become one of the leading academic institutions working on wind energy manufacturing.”

But there’s more at stake here.

“This project is all about making wind energy a reality,” Frank said. “How do we make an impact on the U.S. energy profile? To do that, we have to develop manufacturing technologies that can economically make a lot of these components.”

About TPI Composites Inc.
TPI Composites is a Scottsdale, Ariz.-based leading blade supplier to the wind energy movement. TPI delivers high-quality, cost-effective composite solutions through long-term agreements with the industry’s leading manufacturers, including GE Energy and Mitsubishi Power Systems. TPI operates factories throughout the U.S., Mexico and China. For more information, see www.tpicomposites.com.
About Sandia National Laboratories
Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness. For more information, see www.sandia.gov/index.html.
Contacts:
Matt Frank, Industrial and Manufacturing Systems Engineering, (515) 294-0389, mfrank@iastate.edu
Frank Peters, Industrial and Manufacturing Systems Engineering, (515) 294-3855, fpeters@iastate.edu
Vinay Dayal, Aerospace Engineering, (515) 294-0720, vdayal@iastate.edu
John Jackman, Industrial and Manufacturing Systems Engineering, (515) 294-0126, jkj@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.sandia.gov/index.html
http://www.tpicomposites.com
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>