Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa Power Fund helps Iowa State establish Wind Energy Manufacturing Laboratory

14.09.2009
It’s not easy to make the machines that convert wind to electricity.

Just consider the turbine blades that spin in the wind: a single blade can be 40 to 50 meters long and 12,000 to 15,000 pounds. It has to be built within millimeters of specifications. It has to be built to withstand 20 years of harsh conditions in the field. And it has to be built to handle speeds up to 200 miles per hour at the tip.

Iowa State University researchers are working with researchers from TPI Composites, a Scottsdale, Ariz.-based company that operates a turbine blade factory in Newton; and the U.S. Department of Energy’s Sandia National Laboratories in Albuquerque, N.M., to improve the process currently used to manufacture turbine blades.

The researchers’ work is supported by a three-year, $6.3 million project called the “Advanced Manufacturing Innovation Initiative.” One third of the project’s funding is from the Iowa Power Fund, a state program to advance energy innovation and independence. TPI Composites and the U.S. Department of Energy are also providing equal shares of funding.

The grant will allow Iowa State to establish a Wind Energy Manufacturing Laboratory on campus. The lab will feature the work of four faculty researchers: Matt Frank, Frank Peters and John Jackman, all associate professors of industrial and manufacturing systems engineering, and Vinay Dayal, an associate professor of aerospace engineering. The grant will also support the research of five graduate students and several undergraduates.

The researchers’ goal is to develop new, low-cost manufacturing systems that could improve the productivity of turbine blade factories by as much as 35 percent.

“The current manufacturing methods are very labor intensive,” Jackman said. “We need to improve throughput – we need to get more blades produced every week in order for it to be economical to continue to produce wind energy components in the United States.”

Peters said possible manufacturing improvements include developments in automation and quality control.

Peters said Iowa State’s new lab will initially work with smaller versions of the molds used to manufacture fiberglass turbine blades. The lab will allow the researchers to study blade manufacturing in a controlled setting while they look for ways to boost efficiency. Eventually, the lab could also study the manufacturing of wind towers, the nacelles that sit atop the towers, gearboxes and other wind energy components.

Dayal, who’s also a faculty associate with Iowa State’s Center for Nondestructive Evaluation, said the lab will also look at developing new ways for manufacturers to inspect blades without taking them apart. Faster, better inspections are another way to improve factory efficiency and blade reliability.

The researchers said Iowa State is uniquely positioned to study wind energy manufacturing. Iowa, which has an installed wind energy capacity of 2,790 megawatts, is second in the country in wind power production. And Iowa is one of only two states that are home to manufacturing facilities for wind energy turbines, blades and towers.

“With this project,” the researchers wrote in a project summary, “Iowa State University’s College of Engineering will become one of the leading academic institutions working on wind energy manufacturing.”

But there’s more at stake here.

“This project is all about making wind energy a reality,” Frank said. “How do we make an impact on the U.S. energy profile? To do that, we have to develop manufacturing technologies that can economically make a lot of these components.”

About TPI Composites Inc.
TPI Composites is a Scottsdale, Ariz.-based leading blade supplier to the wind energy movement. TPI delivers high-quality, cost-effective composite solutions through long-term agreements with the industry’s leading manufacturers, including GE Energy and Mitsubishi Power Systems. TPI operates factories throughout the U.S., Mexico and China. For more information, see www.tpicomposites.com.
About Sandia National Laboratories
Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness. For more information, see www.sandia.gov/index.html.
Contacts:
Matt Frank, Industrial and Manufacturing Systems Engineering, (515) 294-0389, mfrank@iastate.edu
Frank Peters, Industrial and Manufacturing Systems Engineering, (515) 294-3855, fpeters@iastate.edu
Vinay Dayal, Aerospace Engineering, (515) 294-0720, vdayal@iastate.edu
John Jackman, Industrial and Manufacturing Systems Engineering, (515) 294-0126, jkj@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.sandia.gov/index.html
http://www.tpicomposites.com
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>