Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015

The Institute for Solar Energy Research Hamelin (ISFH) and the Institute for Electronic Materials and Devices (MBE) of the Leibniz University Hannover have successfully completed the joint-development project “CHIP” on industrial ion implanted n-type PERT (Passivated Emitter and Rear, rear Totally doped) solar cells. In CHIP, the driving mechanisms for the annealing of implant damage have been investigated scientifically with special attention on non-amorphizing boron and amorphizing BFx implants.

The Institute for Solar Energy Research Hamelin (ISFH) and the Institute for Electronic Materials and Devices (MBE) of the Leibniz University Hannover have successfully completed the joint-development project “CHIP” on industrial ion implanted n-type PERT (Passivated Emitter and Rear, rear Totally doped) solar cells.


Photograph of a 156 mm × 156 mm large, ion implanted, co-annealed and fully screen-printed bifacial n-type PERT solar cell with an efficiency of 21 %.

Till Brendemühl/ISFH

The CHIP (Cost-efficient High-throughput Ion implantation for Photovoltaics) project was funded by the German Federal Ministry for Economic Affairs and Energy. In CHIP, the driving mechanisms for the annealing of implant damage have been investigated scientifically with special attention on non-amorphizing boron and amorphizing BFx implants.

The latter are highly relevant for the transfer of ion implantation into photovoltaics since PV implanters generally do not feature mass separators and therefore mainly implant BF2 rather than elementary boron.

The obtained insights into the annealing processes have been applied for processing of industrial n-type PERT cells within a very lean process flow: After double-side texturing of 156mm×156mm large n-type Cz wafers, the front-side was boron or BF2 implanted, and the rear-side was implanted with phosphorous.

Implant damage was annealed in a single high-temperature step (co-annealing), while the utilization of BF2 enabled a significant reduction of required temperature. After annealing, the front-side was passivated by an Al2O3/SiNx stack, and the rear side was passivated by SiNx. Subsequently, screen-print at the front and the rear and co-firing was performed. Silver consumption was minimized utilizing fine-line print.

The highest, independently confirmed efficiency of a cell with a boron implanted emitter, measured on a brass chuck, was 21.0% where Voc was 664.6 mV, Jsc was 39.8 mA/cm2, and FF was 79.3%. In-house measurements from front and rear side yielded a bifaciality factor of 97.3%.

The highest, independently confirmed efficiency of a cell with a BF2 implanted emitter, also measured on a brass chuck, was 20.6% where Voc was 657.6 mV, Jsc was 39.9 mA/cm2, and FF was 78.4%. In-house measurements from front and rear side yielded a bifaciality factor of 97.7%.

According to Dr. Robby Peibst, head of the project, the results show that ion implantation is an enabling and economical doping technology, and screen-print on n-type cells undergoes an evolutionary improvement comparable to that on p-type cells. The lean process flow, the high efficiency without LID and the high bifaciality makes n-type PERT a viable cell concept.

Dr. Roland Goslich | idw - Informationsdienst Wissenschaft

Further reports about: Economic Electronic Energy Research Ion Solarenergieforschung solar cells

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>