Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015

The Institute for Solar Energy Research Hamelin (ISFH) and the Institute for Electronic Materials and Devices (MBE) of the Leibniz University Hannover have successfully completed the joint-development project “CHIP” on industrial ion implanted n-type PERT (Passivated Emitter and Rear, rear Totally doped) solar cells. In CHIP, the driving mechanisms for the annealing of implant damage have been investigated scientifically with special attention on non-amorphizing boron and amorphizing BFx implants.

The Institute for Solar Energy Research Hamelin (ISFH) and the Institute for Electronic Materials and Devices (MBE) of the Leibniz University Hannover have successfully completed the joint-development project “CHIP” on industrial ion implanted n-type PERT (Passivated Emitter and Rear, rear Totally doped) solar cells.


Photograph of a 156 mm × 156 mm large, ion implanted, co-annealed and fully screen-printed bifacial n-type PERT solar cell with an efficiency of 21 %.

Till Brendemühl/ISFH

The CHIP (Cost-efficient High-throughput Ion implantation for Photovoltaics) project was funded by the German Federal Ministry for Economic Affairs and Energy. In CHIP, the driving mechanisms for the annealing of implant damage have been investigated scientifically with special attention on non-amorphizing boron and amorphizing BFx implants.

The latter are highly relevant for the transfer of ion implantation into photovoltaics since PV implanters generally do not feature mass separators and therefore mainly implant BF2 rather than elementary boron.

The obtained insights into the annealing processes have been applied for processing of industrial n-type PERT cells within a very lean process flow: After double-side texturing of 156mm×156mm large n-type Cz wafers, the front-side was boron or BF2 implanted, and the rear-side was implanted with phosphorous.

Implant damage was annealed in a single high-temperature step (co-annealing), while the utilization of BF2 enabled a significant reduction of required temperature. After annealing, the front-side was passivated by an Al2O3/SiNx stack, and the rear side was passivated by SiNx. Subsequently, screen-print at the front and the rear and co-firing was performed. Silver consumption was minimized utilizing fine-line print.

The highest, independently confirmed efficiency of a cell with a boron implanted emitter, measured on a brass chuck, was 21.0% where Voc was 664.6 mV, Jsc was 39.8 mA/cm2, and FF was 79.3%. In-house measurements from front and rear side yielded a bifaciality factor of 97.3%.

The highest, independently confirmed efficiency of a cell with a BF2 implanted emitter, also measured on a brass chuck, was 20.6% where Voc was 657.6 mV, Jsc was 39.9 mA/cm2, and FF was 78.4%. In-house measurements from front and rear side yielded a bifaciality factor of 97.7%.

According to Dr. Robby Peibst, head of the project, the results show that ion implantation is an enabling and economical doping technology, and screen-print on n-type cells undergoes an evolutionary improvement comparable to that on p-type cells. The lean process flow, the high efficiency without LID and the high bifaciality makes n-type PERT a viable cell concept.

Dr. Roland Goslich | idw - Informationsdienst Wissenschaft

Further reports about: Economic Electronic Energy Research Ion Solarenergieforschung solar cells

More articles from Power and Electrical Engineering:

nachricht Hybrid storage with market potential: Battery production goes Industrie 4.0
01.03.2017 | Fraunhofer Institute for Applied Polymer Research IPA

nachricht WSU research advances energy savings for oil, gas industries
28.02.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>