Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward “Invisible Electronics” and Transparent Displays

06.02.2009
Researchers in California are reporting an advance toward the long-sought goal of "invisible electronics" and transparent displays, which can be highly desirable for heads-up displays, wind-shield displays, and electronic paper.

The scientists describe development of tiny, transparent electronic circuits — the most powerful of their kind to date — that could pave the way for transparent electronics and other futuristic applications, including flexible electronic newspapers and wearable clothing displays. Their study appeared in the Jan. 27 issue of ACS Nano, a monthly journal.

In the new study, Chongwu Zhou and colleagues point out that although scientists have previously developed nano-sized transparent circuits, previous versions are limited to a handful of materials that are transparent semiconductors.

The researchers describe the development of transparent thin-film transistors (TTFTs) composed of highly aligned, single-walled carbon nanotubes — each about 1/50,000th the width of a single human hair. They are transparent, flexible, and perform well. Laboratory experiments showed that TTFTs could be easily applied to glass and plastic surfaces, and showed promise in other ways for a range of possible practical applications. - MTS

ARTICLE #4 FOR IMMEDIATE RELEASE
“Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates”

DOWNLOAD FULL TEXT ARTICLE: http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/nn800434d

CONTACT:
Chongwu Zhou, Ph.D.
University of Southern California
Los Angeles, Ca. 90089
Phone: (213)740-4708
Email: chongwuz@usc.edu

Michael Woods | Newswise Science News
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>