Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New International Standard to Address Energy Management

Energy and sustainability experts at the Georgia Institute of Technology have taken a leadership role in the U.S. contribution to a 36-nation effort aimed at developing an international standard that would bring consistency to energy management systems worldwide.

The effort has implications for the public and private sectors alike, providing a process for managing energy use and implementing sustainable practices that would help hold down costs and minimize environmental impacts. This first-ever international energy management system standard – to be known as ISO 50001 – would also level the playing field for companies competing in the global marketplace.

With broad applicability across economic sectors, the standard could ultimately affect as much as 60 percent of the energy used in the world.

“Effective implementation of an energy management system standard often yields resource and cost savings, as well as risk avoidance,” explained Bill Meffert, manager of energy and sustainability services at Georgia Tech’s Enterprise Innovation Institute. “Reduction in the use of non-renewable fuels provides environmental benefits to the nation, improves security and leads to use of more sustainable sources of energy. Process and behavioral changes from targeted energy management projects frequently result in reduced raw materials usage, less waste generation and disposal, and lower air emissions.”

Beyond the direct benefits, adoption of ISO 50001 could also lead to long-term cultural changes that benefit organizations in other ways. “An energy management system standard establishes a culture of continual improvement to sustain the gains made, placing the organization in a position to realize even greater energy efficiencies and further savings,” Meffert added.

The U.S. Department of Energy is supporting the effort through a combination of active participation in the U.S. Technical Advisory Group (TAG) and through financial support for the administration of the U.S. TAG. The U.S. TAG is responsible for developing the U.S. consensus position on the proposed standard.

Rising energy prices have made managing energy a higher priority for industrial, commercial and governmental organizations worldwide. Beyond helping manage costs and controlling environmental impacts, large energy users may be driven to adopt the voluntary standards as evidence of their good corporate citizenship.

“Many countries around the world will use the standard as the basis for national programs that encourage large energy users to demonstrate their environmental stewardship,” Meffert said. “It is expected that national incentives – taxes, credits and similar vehicles – will be used to promote its use and adoption.”

Companies that adopt the new standard may also gain a public relations and marketing advantage.

“Companies that conform to an international energy management system standard will be publicly stating that they have adopted best practices for managing their energy supply and use, which helps make them competitive,” Meffert added. “They are also showing that they are managing their natural resources wisely. Many companies will also want to ensure that their suppliers and partners are environmentally responsible.

In general, Meffert noted, standards are useful to helping organizations establish the order and consistency to manage key business components, whether they address quality, environmental protection or energy issues.

“By applying this standard, the organization uses the ‘Plan-Do-Check-Act’ steps of the continual improvement framework to manage energy resources, incorporating energy management into everyday business operations and strategies,” he said. “This framework encompasses both the management and the technical elements of energy management. The effective management of energy requires both to be present and integrated.”

While industry has driven development of the new standard, it could be used by any energy-consuming organization. The standard will define a management system for all energy sources – including electricity, liquid and solid fuels, renewable sources, steam, compressed air and chilled water.

The new ISO 50001 is being developed through a consensus process of the International Standards Organization (ISO) that involves representatives from national standards organizations in more than 36 countries who develop proposals, discuss issues, build consensus – and adopt the final standard.

The United States and Brazil are leading the overall effort under ISO’s framework. In addition to member nation representatives, two liaison members – the United Nations Industrial Development Organization and the World Energy Council – are also contributing to the effort.

The ISO/PC 242 committee established to develop the standard held its first meeting in Washington in early September, and will hold additional meetings on a regular basis. The goal is to have ISO 50001 ready for publication by the end of 2010, said Deann Desai, project manager with the Enterprise Innovation Institute who serves as secretary to the U.S. TAG.

“Excellent progress was made during the first meeting, and a working draft has already been developed,” she noted. “Among the issues discussed was the need to ensure compatibility between the new ISO 50001 and existing ISO management standards.”

Georgia Tech was heavily involved in developing the existing American National Standards Institute (ANSI) MSE 2000:2008 standard for energy management systems. That standard has seen limited adoption in the United States, but Meffert said globalization of commerce now requires an international standard that will be widely adopted.

“Many businesses today are multinationals that have facilities and/or trading partners overseas,” he explained. “When conducting business on a multinational basis, it is important that the competitive playing field be as even as possible – which is what standardization attempts to accomplish.”

Georgia Tech worked closely with the Department of Energy in activities leading up to the formal launch of the ISO 50001 development effort.

Members of Georgia Tech’s energy and sustainability staff helped develop a comparison document that was used to facilitate initial international meetings, and they participated with ANSI in the process of producing an application to ISO explaining the need for the new standard.

Georgia Tech’s Enterprise Innovation Institute is administering the U.S. Technical Advisory Group (TAG) for ANSI. The group is composed of many energy management experts and helps shape the U.S. position for the international standard.

Organizations interested in participating should contact Deann Desai at (770) 605-4474 or (

John Toon | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>