Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent use of the Earth's heat

02.03.2009
Enhanced geothermal energy using modern research methods

Geothermal energy is increasingly contributing to the power supply world wide. Iceland is world-leader in expanding development of geothermal utilization: in recent years the annual power supply here doubled to more than 500 MW alone in the supply of electricity. And also in Germany, a dynamic development is to be seen: over 100 MW of heat are currently being provided through geothermal energy.

Alone in the region of Travale, in the pioneering country Italy, a team of european scientists have localizied geothermal reservoirs, holding a potential comparable to the effectiveness of 1.000 wind power plants. This is one of the results presented at the international final conference of the project „I-GET" (Integrated Geophysical Exploration Technologies for deep fractured geothermal systems) in Potsdam. The aim of this European Union project, in which seven european nations participated, was the development of cutting-edge geophysical methods with which potential geothermal reservoirs can be safely explored and directly tapped.

„The new methods deliver important decision-support for the selection of sites for future geothermal projects. With this we can considerably reduce the risk of expensive misdrills" explains Dr. Ernst Huenges, Head of Geothermal Research at the host institute GFZ - German Research Centre for Geosciences.

The newly developed approaches have been tested at four European geothermal locations with different geological and thermo¬dynamic conditions: high-temperature reservoirs have been examined in Travale/Italien (metamorphic rocks) and in Hengill/Island (volcanic rocks), two deposits with medium-temperature in deep sediment rocks are Groß-Schönebeck/Germany and Skierniewice/Poland. The methodology is based on the measurement of seismic velocities and electrical conductivity in the underground which deliver information on the rock-physical characteristics at depth. Different methods have, hereby, been combined, in addition to borehole measurements and rock-analysis.

I-GET experiments have been carried out using a case study in the surrounding of the GFZ research borehole at Groß Schönebeck, nordwest of Berlin. And here, extensive pre-knowledge from experimental investigations in the in situ geothermal-laboratory in Groß Schönebeck is already available. The geological conditions prevailing in the North German Basin are representative for further parts of central Europe, and thus the research results are also of high interest beyond Germany's borders.

The GFZ, member of the Helmholtz-Association of German Research Centres, had the leading role in I-GET and was able to contribute with is acquired knowledge in the field of low-temperature geothermal reservoirs.

The results of I-GET emanate worldwide: experts from Indonesia, New Zealand, Australia, Japan and the USA were among the 120 scientists and industry representatives from the 20 countries who participated at the meeting.

„Reliable geothermal technologies are in demand worldwide. Even countries with a long experience in geothermal energy such as Indonesia and New Zealand are interested in the results acquired in I-GET", says Dr. Ernst Huenges. Therefore, the GFZ is further developing its geothermal research and is currently setting up an International Centre for Geothermal Research, which will, in particular, carry out application-oriented large-scale projects on a national and international level.

Franz Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>