Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligent use of the Earth's heat

Enhanced geothermal energy using modern research methods

Geothermal energy is increasingly contributing to the power supply world wide. Iceland is world-leader in expanding development of geothermal utilization: in recent years the annual power supply here doubled to more than 500 MW alone in the supply of electricity. And also in Germany, a dynamic development is to be seen: over 100 MW of heat are currently being provided through geothermal energy.

Alone in the region of Travale, in the pioneering country Italy, a team of european scientists have localizied geothermal reservoirs, holding a potential comparable to the effectiveness of 1.000 wind power plants. This is one of the results presented at the international final conference of the project „I-GET" (Integrated Geophysical Exploration Technologies for deep fractured geothermal systems) in Potsdam. The aim of this European Union project, in which seven european nations participated, was the development of cutting-edge geophysical methods with which potential geothermal reservoirs can be safely explored and directly tapped.

„The new methods deliver important decision-support for the selection of sites for future geothermal projects. With this we can considerably reduce the risk of expensive misdrills" explains Dr. Ernst Huenges, Head of Geothermal Research at the host institute GFZ - German Research Centre for Geosciences.

The newly developed approaches have been tested at four European geothermal locations with different geological and thermo¬dynamic conditions: high-temperature reservoirs have been examined in Travale/Italien (metamorphic rocks) and in Hengill/Island (volcanic rocks), two deposits with medium-temperature in deep sediment rocks are Groß-Schönebeck/Germany and Skierniewice/Poland. The methodology is based on the measurement of seismic velocities and electrical conductivity in the underground which deliver information on the rock-physical characteristics at depth. Different methods have, hereby, been combined, in addition to borehole measurements and rock-analysis.

I-GET experiments have been carried out using a case study in the surrounding of the GFZ research borehole at Groß Schönebeck, nordwest of Berlin. And here, extensive pre-knowledge from experimental investigations in the in situ geothermal-laboratory in Groß Schönebeck is already available. The geological conditions prevailing in the North German Basin are representative for further parts of central Europe, and thus the research results are also of high interest beyond Germany's borders.

The GFZ, member of the Helmholtz-Association of German Research Centres, had the leading role in I-GET and was able to contribute with is acquired knowledge in the field of low-temperature geothermal reservoirs.

The results of I-GET emanate worldwide: experts from Indonesia, New Zealand, Australia, Japan and the USA were among the 120 scientists and industry representatives from the 20 countries who participated at the meeting.

„Reliable geothermal technologies are in demand worldwide. Even countries with a long experience in geothermal energy such as Indonesia and New Zealand are interested in the results acquired in I-GET", says Dr. Ernst Huenges. Therefore, the GFZ is further developing its geothermal research and is currently setting up an International Centre for Geothermal Research, which will, in particular, carry out application-oriented large-scale projects on a national and international level.

Franz Ossing | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>