Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligence for Medium-Voltage Networks

Siemens has developed a system for automatically regulating medium-voltage distribution networks.

This technology exploits the network's efficiency potential and makes it easier to integrate decentralized generation such as small hydroelectric power plants and solar parks. The core of this solution is the Software that monitors the current state of the network. Based in the surveillance information the network can be automatically adjusted to an optimal level.

With this system electric utilities can supply more consumers with the existing network and have more flexibility in the integration of distributed generation. Until now, extra power could only be fed into the network at points where the grid voltage is not incorrectly affected.

Occasionally this requires long connection cables with high connection costs which are hindering the expansion of renewable energy. Since January, the grid in Lungau in the Austrian state of Salzburg has been regulated automatically.

Within the power system, only the complete high-voltage network is automatically regulated and controlled today. Due to the increasing number of energy sources feeding into the medium and low voltage networks, these elements need to become more intelligent as well. Networks could then react flexibly, like the links in a chain.

A medium-voltage distribution network carries voltage ranging from 1 kilovolt (kV) to around 75 kV. Until now, the data needed to actively maintain the voltage within an allowed voltage range has been lacking. Instead, network voltage is periodically set using calculations based on simulated worst case scenarios. As result the network voltage is kept in the upper part of the voltage range in order to maintain an appropriate safety margin.

The Siemens software uses little measurement data to reliably calculate the steady state of the whole network. Based on this information, optimization software can automatically regulate the voltage and dynamically optimize the grid. For example, to properly adjust the network voltage, the small power plants' generators can be operated to produce or absorb reactive power. The network is reacting flexibly to distributed generation and it can be fully operated at a tolerable lower voltage level.

The automation of middle voltage network is a central step toward creating smart grids. Siemens developed this technology together with Salzburg Netz GmbH as part of the Austrian industrial research project ZUQDE which was funded by the Austrian climate and energy fonds.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>