Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligence for Medium-Voltage Networks

06.08.2012
Siemens has developed a system for automatically regulating medium-voltage distribution networks.

This technology exploits the network's efficiency potential and makes it easier to integrate decentralized generation such as small hydroelectric power plants and solar parks. The core of this solution is the Software that monitors the current state of the network. Based in the surveillance information the network can be automatically adjusted to an optimal level.



With this system electric utilities can supply more consumers with the existing network and have more flexibility in the integration of distributed generation. Until now, extra power could only be fed into the network at points where the grid voltage is not incorrectly affected.

Occasionally this requires long connection cables with high connection costs which are hindering the expansion of renewable energy. Since January, the grid in Lungau in the Austrian state of Salzburg has been regulated automatically.

Within the power system, only the complete high-voltage network is automatically regulated and controlled today. Due to the increasing number of energy sources feeding into the medium and low voltage networks, these elements need to become more intelligent as well. Networks could then react flexibly, like the links in a chain.

A medium-voltage distribution network carries voltage ranging from 1 kilovolt (kV) to around 75 kV. Until now, the data needed to actively maintain the voltage within an allowed voltage range has been lacking. Instead, network voltage is periodically set using calculations based on simulated worst case scenarios. As result the network voltage is kept in the upper part of the voltage range in order to maintain an appropriate safety margin.

The Siemens software uses little measurement data to reliably calculate the steady state of the whole network. Based on this information, optimization software can automatically regulate the voltage and dynamically optimize the grid. For example, to properly adjust the network voltage, the small power plants' generators can be operated to produce or absorb reactive power. The network is reacting flexibly to distributed generation and it can be fully operated at a tolerable lower voltage level.

The automation of middle voltage network is a central step toward creating smart grids. Siemens developed this technology together with Salzburg Netz GmbH as part of the Austrian industrial research project ZUQDE which was funded by the Austrian climate and energy fonds.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>