Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Installed Cost of Solar Photovoltaic Systems in the U.S. Declined Significantly in 2010 and 2011

16.09.2011
Berkeley Lab releases “Tracking the Sun IV,” a report on PV systems from 1998 to 2010.

The installed cost of solar photovoltaic (PV) power systems in the United States fell substantially in 2010 and into the first half of 2011, according to the latest edition of an annual PV cost tracking report released by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

The average installed cost of residential and commercial PV systems completed in 2010 fell by roughly 17 percent from the year before, and by an additional 11 percent within the first six months of 2011. These recent installed cost reductions are attributable, in part, to dramatic reductions in the price of PV modules. Galen Barbose of Berkeley Lab’s Environmental Energy Technologies Division and co-author of the report explains: “Wholesale PV module prices have fallen precipitously since about 2008, and those upstream cost reductions have made their way through to consumers.”

The report indicates that non-module costs—such as installation labor, marketing, overhead, inverters, and the balance of systems—also fell for residential and commercial PV systems in 2010. “The drop in non-module costs is especially important,” notes report co-author and Berkeley Lab scientist Ryan Wiser, “as those are the costs that can be most readily influenced by solar policies aimed at accelerating deployment and removing market barriers, as opposed to research and development programs that are also aimed at reducing module costs.” According to the report, average non-module costs for residential and commercial systems declined by roughly 18 percent from 2009 to 2010.

Turning to utility-sector PV, costs varied over a wide range for systems installed in 2010, with the cost of systems greater than 5,000 kilowatts (kW) ranging from $2.90 per Watt (W) to $6.20/W, reflecting differences in project size and system configuration, as well as the unique characteristics of certain individual projects. Consistent with continued cost reductions, current benchmarks for the installed cost of prototypical, large utility-scale PV projects generally range from $3.80/W to $4.40/W.

The market for solar PV systems in the United States has grown rapidly over the past decade, as national, state and local governments offered various incentives to expand the solar market and accelerate cost reductions. The study—the fourth in Berkeley Lab’s “Tracking the Sun” report series—describes trends in the installed cost of PV in the United States, and examined more than 115,000 residential, commercial and utility-sector PV systems installed between 1998 and 2010 across 42 states, representing roughly 78 percent of all grid-connected PV capacity installed in the United States. Naïm Darghouth, also with Berkeley Lab, explains that “the study is intended to provide policy makers and industry observers with a reliable and detailed set of historical benchmarks for tracking and understanding past trends in the installed cost of PV.”

Costs Differ by Region and by Size and Type of System

The study also highlights differences in installed costs by region and by system size and installation type. Comparing across U.S. states, for example, the average cost of PV systems installed in 2010 and less than 10 kilowatts (kW) in size ranged from $6.30/W to $8.40/W depending on the state. The report also found that residential PV systems installed on new homes had significantly lower average installed costs than those installed as retrofits to existing homes.

Based on these data and on installed cost data from the sizable German and Japanese PV markets, the authors suggest that PV costs may be driven lower through large-scale deployment programs, but that other factors are also important in achieving cost reductions.

The report also shows that PV installed costs exhibit significant economies of scale. Among systems installed in 2010, those smaller than 2 kW averaged $9.80/W, while large commercial systems >1,000 kW averaged $5.20/W; partial-year data for 2011 suggests that average costs declined even further in 2011. Large utility-sector systems installed in 2010 registered even lower costs, with a number of systems in the $3.00/W to $4.00/W range.

Cost Declines for PV System Owners in 2010 Were Partially Offset by Falling Incentives

The average size of direct cash incentives provided through state and utility PV incentive programs has declined steadily since their peak in 2002. The dollar-per-Watt benefit of the federal investment tax credit (ITC) and Treasury grant in lieu of the ITC, which are based on a percentage of installed cost, also fell in 2010 as a result of the drop in average installed costs.

The reduced value of federal, state, and utility incentives in 2010 partially offset the decline in installed costs. Therefore, while pre-incentive installed costs fell by $1.00/W and $1.50/W for residential and commercial PV in 2010, respectively, the decline in “net” (or post-incentive) installed costs fell by $0.40/W for residential PV and by $0.80/W for commercial PV.

The report “Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010,” by Galen Barbose, Naïm Darghouth, and Ryan Wiser, may be downloaded from http://eetd.lbl.gov/ea/emp/reports/lbnl-5047e.pdf.

The research was supported by funding from the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy and by the Clean Energy States Alliance, a national nonprofit coalition of leading state clean energy programs that work together to advance renewable energy project deployment in their states and across the country.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.

Allan Chen | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>