Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Installed Cost of Solar Photovoltaic Systems in the U.S. Declined Significantly in 2010 and 2011

Berkeley Lab releases “Tracking the Sun IV,” a report on PV systems from 1998 to 2010.

The installed cost of solar photovoltaic (PV) power systems in the United States fell substantially in 2010 and into the first half of 2011, according to the latest edition of an annual PV cost tracking report released by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

The average installed cost of residential and commercial PV systems completed in 2010 fell by roughly 17 percent from the year before, and by an additional 11 percent within the first six months of 2011. These recent installed cost reductions are attributable, in part, to dramatic reductions in the price of PV modules. Galen Barbose of Berkeley Lab’s Environmental Energy Technologies Division and co-author of the report explains: “Wholesale PV module prices have fallen precipitously since about 2008, and those upstream cost reductions have made their way through to consumers.”

The report indicates that non-module costs—such as installation labor, marketing, overhead, inverters, and the balance of systems—also fell for residential and commercial PV systems in 2010. “The drop in non-module costs is especially important,” notes report co-author and Berkeley Lab scientist Ryan Wiser, “as those are the costs that can be most readily influenced by solar policies aimed at accelerating deployment and removing market barriers, as opposed to research and development programs that are also aimed at reducing module costs.” According to the report, average non-module costs for residential and commercial systems declined by roughly 18 percent from 2009 to 2010.

Turning to utility-sector PV, costs varied over a wide range for systems installed in 2010, with the cost of systems greater than 5,000 kilowatts (kW) ranging from $2.90 per Watt (W) to $6.20/W, reflecting differences in project size and system configuration, as well as the unique characteristics of certain individual projects. Consistent with continued cost reductions, current benchmarks for the installed cost of prototypical, large utility-scale PV projects generally range from $3.80/W to $4.40/W.

The market for solar PV systems in the United States has grown rapidly over the past decade, as national, state and local governments offered various incentives to expand the solar market and accelerate cost reductions. The study—the fourth in Berkeley Lab’s “Tracking the Sun” report series—describes trends in the installed cost of PV in the United States, and examined more than 115,000 residential, commercial and utility-sector PV systems installed between 1998 and 2010 across 42 states, representing roughly 78 percent of all grid-connected PV capacity installed in the United States. Naïm Darghouth, also with Berkeley Lab, explains that “the study is intended to provide policy makers and industry observers with a reliable and detailed set of historical benchmarks for tracking and understanding past trends in the installed cost of PV.”

Costs Differ by Region and by Size and Type of System

The study also highlights differences in installed costs by region and by system size and installation type. Comparing across U.S. states, for example, the average cost of PV systems installed in 2010 and less than 10 kilowatts (kW) in size ranged from $6.30/W to $8.40/W depending on the state. The report also found that residential PV systems installed on new homes had significantly lower average installed costs than those installed as retrofits to existing homes.

Based on these data and on installed cost data from the sizable German and Japanese PV markets, the authors suggest that PV costs may be driven lower through large-scale deployment programs, but that other factors are also important in achieving cost reductions.

The report also shows that PV installed costs exhibit significant economies of scale. Among systems installed in 2010, those smaller than 2 kW averaged $9.80/W, while large commercial systems >1,000 kW averaged $5.20/W; partial-year data for 2011 suggests that average costs declined even further in 2011. Large utility-sector systems installed in 2010 registered even lower costs, with a number of systems in the $3.00/W to $4.00/W range.

Cost Declines for PV System Owners in 2010 Were Partially Offset by Falling Incentives

The average size of direct cash incentives provided through state and utility PV incentive programs has declined steadily since their peak in 2002. The dollar-per-Watt benefit of the federal investment tax credit (ITC) and Treasury grant in lieu of the ITC, which are based on a percentage of installed cost, also fell in 2010 as a result of the drop in average installed costs.

The reduced value of federal, state, and utility incentives in 2010 partially offset the decline in installed costs. Therefore, while pre-incentive installed costs fell by $1.00/W and $1.50/W for residential and commercial PV in 2010, respectively, the decline in “net” (or post-incentive) installed costs fell by $0.40/W for residential PV and by $0.80/W for commercial PV.

The report “Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010,” by Galen Barbose, Naïm Darghouth, and Ryan Wiser, may be downloaded from

The research was supported by funding from the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy and by the Clean Energy States Alliance, a national nonprofit coalition of leading state clean energy programs that work together to advance renewable energy project deployment in their states and across the country.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.

Allan Chen | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>