Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insight on Superconductors

01.08.2008
An important advance in understanding how the electrons in some materials become superconducting has been made by researchers from UC Davis, the Los Alamos National Laboratory and UC Irvine. The work, published July 31 in the journal Nature, could lead to a deeper understanding of superconductivity and to new materials that are superconducting at higher temperatures.

The team of researchers, led by Yi-feng Yang, a postdoctoral fellow at UC Davis, found a simple way to calculate the temperature at which a new state of matter, the Kondo liquid, emerges in the class of metal alloys called heavy-electron materials. At very low temperatures, these alloys can become superconductors that conduct electricity without resistance.

"We've found a framing concept for an important class of materials, which allows us to begin to understand how they relate to each other and perhaps to find new members of the group," said Yang's postdoctoral mentor and team member, David Pines, distinguished professor of physics at UC Davis and co-director of ICAM, the Institute for Complex Adaptive Matter.

Heavy electron materials are alloys of metals such as cerium, ytterbium and uranium. They contain both free-moving electrons that make them electrical conductors and a "Kondo" lattice of localized electrons. When the temperature of the material is lowered below a characteristic temperature, the localized electrons lose their magnetism as they become collectively "entangled" through quantum mechanical effects with the conduction electrons, which become heavy and form the Kondo liquid. At much lower temperatures these heavy electrons then become either magnetic or superconducting.

Yang received a fellowship from ICAM that enabled him to become "embedded" in an experimental group on heavy electron materials led by Joe D. Thompson at Los Alamos. With Thompson and Han-oh Lee at Los Alamos, and Zachary Fisk at UC Irvine, he reviewed 30 years of existing data on heavy-electron materials, plus new experimental data collected by Thompson and Lee, to establish a long-sought connection between single impurities and lattice behavior in these materials.

They found that the crucial temperature at which the Kondo liquid emerges depends in a remarkably simple way on the coupling of individual local spins to the conduction electrons, Pines said.

The discovery should help researchers find the organizing principles of heavy-electron superconductivity, because it clarifies the nature of the normal state out of which superconductivity emerges, Pines said.

The work was supported by the National Science Foundation and by the ICAM fellowship for Yang. ICAM is a multidisciplinary research program of the University of California that has 57 branches across the U.S. and globally, with its headquarters at UC Davis.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>