Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative amplifiers for high-spatial-resolution biomedical and environment monitoring system

06.03.2013
Toyohashi Tech researchers have developed small-area, low-power, low-noise instrumentation amplifiers for high-spatial-resolution biomedical and environment monitoring system.
This report is featured in the March 2013 issue of the Toyohashi Tech eNewsletter : http://www.tut.ac.jp/english/
newsletter/index.html

Small instrumentation amplifier for high density arrayed sensor devices

Small-area, low-power, low-noise instrumentation amplifiers (IA) are critical components of arrayed sensor devices used for high-spatial-resolution biomedical and environment monitoring system.
However, in order to realize small offset voltages of IA, conventional IAs utilize analog filters¡ªcomposed of large passive components, resistors and capacitors¡ª resulting in excessively large silicon chips.

Now, Ippei Akita and colleague at Toyohashi University of Technology have developed a novel architecture for fabricating smaller sized integrated circuit chips. The technique is based on a digital calibration scheme for minimizing the offset voltage of the IA circuit, instead of an analog scheme used in conventional circuits.

The offset exists mainly at the first-stage circuit of IA. In this design, the researchers introduced a reconfigurable first-stage circuit. The best configuration for minimizing the offset was easily determined by calibration logic which was implemented in a small area compared to analog circuits.

The proposed IA was implemented in a standard 0.18 micrometer CMOS and resulted with an offset voltage of
The researchers plan to use the proposed IA for the fabrication of an arrayed IA for high-spatial-resolution and real-time sensing systems.

About Toyohashi University of Technology:
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.
Website: http://www.tut.ac.jp/english/

About the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS):
EIIRIS is Toyohashi Tech¡¯s new flagship research complex launched on 1st October 2010. "The aim of EIIRIS is to produce world-class innovative research," says President Yoshiyuki Sakaki. "To do this we are bringing together ambitious young researchers from diverse fields to collaborate on pioneering new frontiers in science such as brain/neuro-electronics as well as tackling some of the major issues mankind faces today: issues such as environmental changes and aging societies."

Designing concept for STB

Website: http://www.eiiris.tut.ac.jp/index.html

Associated links
http://www.tut.ac.jp/english/newsletter/index.html
Journal information
Authors: Ippei Akita and Makoto Ishida
Title of original paper: A 0.06mm2 14nV/¡ÌHz chopper instrumentation amplifier with automatic differential-pair matching.
Journal, volume, pages and year: IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), pp.178-179, Feb. 2013
Affiliations: Department of Electrical & Electronic Engineering, Toyohashi University of Technology.

Department website: http://www.int.ee.tut.ac.jp/icg/

Adarsh Sandhu | Research asia research news
Further information:
http://www.tut.ac.jp/english/newsletter/index.html
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>