Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative amplifiers for high-spatial-resolution biomedical and environment monitoring system

06.03.2013
Toyohashi Tech researchers have developed small-area, low-power, low-noise instrumentation amplifiers for high-spatial-resolution biomedical and environment monitoring system.
This report is featured in the March 2013 issue of the Toyohashi Tech eNewsletter : http://www.tut.ac.jp/english/
newsletter/index.html

Small instrumentation amplifier for high density arrayed sensor devices

Small-area, low-power, low-noise instrumentation amplifiers (IA) are critical components of arrayed sensor devices used for high-spatial-resolution biomedical and environment monitoring system.
However, in order to realize small offset voltages of IA, conventional IAs utilize analog filters¡ªcomposed of large passive components, resistors and capacitors¡ª resulting in excessively large silicon chips.

Now, Ippei Akita and colleague at Toyohashi University of Technology have developed a novel architecture for fabricating smaller sized integrated circuit chips. The technique is based on a digital calibration scheme for minimizing the offset voltage of the IA circuit, instead of an analog scheme used in conventional circuits.

The offset exists mainly at the first-stage circuit of IA. In this design, the researchers introduced a reconfigurable first-stage circuit. The best configuration for minimizing the offset was easily determined by calibration logic which was implemented in a small area compared to analog circuits.

The proposed IA was implemented in a standard 0.18 micrometer CMOS and resulted with an offset voltage of
The researchers plan to use the proposed IA for the fabrication of an arrayed IA for high-spatial-resolution and real-time sensing systems.

About Toyohashi University of Technology:
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.
Website: http://www.tut.ac.jp/english/

About the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS):
EIIRIS is Toyohashi Tech¡¯s new flagship research complex launched on 1st October 2010. "The aim of EIIRIS is to produce world-class innovative research," says President Yoshiyuki Sakaki. "To do this we are bringing together ambitious young researchers from diverse fields to collaborate on pioneering new frontiers in science such as brain/neuro-electronics as well as tackling some of the major issues mankind faces today: issues such as environmental changes and aging societies."

Designing concept for STB

Website: http://www.eiiris.tut.ac.jp/index.html

Associated links
http://www.tut.ac.jp/english/newsletter/index.html
Journal information
Authors: Ippei Akita and Makoto Ishida
Title of original paper: A 0.06mm2 14nV/¡ÌHz chopper instrumentation amplifier with automatic differential-pair matching.
Journal, volume, pages and year: IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), pp.178-179, Feb. 2013
Affiliations: Department of Electrical & Electronic Engineering, Toyohashi University of Technology.

Department website: http://www.int.ee.tut.ac.jp/icg/

Adarsh Sandhu | Research asia research news
Further information:
http://www.tut.ac.jp/english/newsletter/index.html
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>