Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovation on the move

The A*STAR Institute of Microelectronics and Japan’s Shikino High-Tech Co., Ltd have united to develop improved technologies for motion sensing

Motion sensing is fast becoming a ‘must-have’ function in consumer electronics today. For instance, motion-sensing capability is incorporated into digital cameras and camcorders, enabling image stabilization and augmentation with information such as where a shot was taken and the direction that the camera was pointing. In game consoles and smartphones, motion is used to control game play and to enable user interface functionality.

Gyro sensors, also known as gyroscopes, are the motion-sensing devices that enable such functionality by sensing changes in angular velocity. In addition to their use in consumer electronics, gyro sensors can be integrated with portable medical devices and sports equipment, allowing patients to be monitored remotely by medical staff and athletes’ motion to be tracked for training purposes.

Joining efforts with a Japanese camera systems and image-processing module developer, Shikino High-Tech Co., Ltd, the A*STAR Institute of Microelectronics (IME) has signed a research agreement to pioneer an energy-efficient, high-performance application-specific integrated circuit intellectual property (ASIC IP) block for a gyro sensor to be installed in commercial handheld devices. Yuaki Osada, president of Shikino High-Tech, believes that the IME is an excellent choice of collaborative partner for the project due to the institute’s proven and outstanding capabilities, particularly in the area of analog technology development.

“It is a valuable opportunity for Shikino High-Tech to work with the IME in this advanced technology project,” says Osada. The agreement marks the first formal collaboration in Singapore for Shikino High-Tech, which boasts more than 25 years of R&D experience in Japan and an impressive record of technological inventions and patents. Osada is confident in the success of this initial research project and anticipates further exciting collaborations with the IME in the future.

The IME, founded in 1991, is a recognized leader in the development of commercial technologies and has particular strengths the areas of microelectronics and semiconductors. Part of the institute’s core mission is to provide support to industry. Its multidisciplinary approach to research, expertise in technology transfer and state-of-the-art facilities have led to the establishment of collaborations with more than 50 multinational firms and across every sector of the electronics industry.

Dim-Lee Kwong, executive director of the IME, is enthusiastic about the venture with Shikino High-Tech. Noting the IME’s extensive research experience with Japanese companies, he is confident that the partnership will benefit both Shikino High-Tech and A*STAR. “This new collaboration will no doubt provide a strategic platform for the IME’s researchers to leverage existing capabilities in the development of innovative gyro sensor technologies.”

This new strategic partnership between the IME and Shikino High-Tech is a further testament to Singapore’s position as a preferred country for Japanese companies to invest and expand in. In recent years, the number of collaborations formed between local establishments and Japanese companies has been growing steadily. According to the 2012 Singapore Business Formation Statistics Report, Japan ranks among the top investors in the Republic for that year.

About the Institute of Microelectronics

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, the IME’s mission is to add value to Singapore’s semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics.

A*STAR Research | Research asia research news
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>