Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Heat Increases the Up-Time of Gas Power Plant

27.07.2010
Comprehensive and rapid de-icing of intake filters

Gas power plants, which supply electricity to meet peak demands, must work reliably and come on line rapidly, especially in the cold times of the year.


Infrared emitters from Heraeus Noblelight, under test, heating fleece filters, so that they can operate without icing up. Copyright Heraeus Noblelight 2010


Fitting of the infrared de-icing system in the Trianel Gas Power Plant in Hamm. Copyright Heraeus Noblelight 2010

For combustion, gas turbines need air which must be free from dust and other particles and, consequently, this is always pre-filtered. Cold and moist intake air in the winter months can easily lead to icing up of the filters. This means that less air is is passed through the filters so that the turbines must be choked or switched off – just when they are most needed.

At Trianel in Hamm, infrared systems from Heraeus Noblelight complement the de-icing protection in a modern combined cycle power plant (GuD). In just two weeks in May, 24 infrared modules, including controls, were installed and commissioned.

Modern combined cycle (gas and steam turbine) power plants generate electricity at a relatively high efficiency of around 60%, significantly higher than conventional power plants at around 40%. Moreover, they can be brought on line very quickly and so are used for handling medium and peak electricity load demands.

Electricity consumption is not steady but demand is in peaks and troughs. To meet this, fast acting power plants must be used. These can provide high power output within minutes. Gas power points offer such capability and they rely on being able to take in cleaned air. If the in-line filters become iced up, this can lead to power plant shut down. An efficient de-icing system, which above all must operate quickly and reliably, has to guarantee the availability of the power plant even in the cold winter months.

Trianel GmbH is a co-operative of 47 public utilities and operates a combined cycle power plant with two block unit power stations in Hamm. A coal-fired power station is under construction in Luenen and a further one is planned for Krefeld. An offshore wind farm is also underway in front of the island of Borkum. The combined cycle plant in Hamm is already several years old. The experience of the last two relatively hard winters caused Trianel to consider enhancing its existing anti-icing systems. Any solution had to be as easy as possible to retrofit and very responsive.

Thomas Kleinwaechter, manager of technical management and maintenance in Hamm, met with Heraeus Noblelight to investigate the suitability of electrical infrared systems for this application.

As with most gas power plants, the plant in Hamm used the “waste heat” from electricity generation for filter de-icing. This hot air is blown onto the pocket filters, made of fleecy material. However, there can be local cold and hot zones, especially when the hot air is not distributed sufficiently.

In contrast, infrared radiation has significant benefits. Energy is distributed without contact and generates heat within the material itself. In addition, infrared heat is rapidly available and heating is more energy-efficient than many conventional methods.

“I am convinced that infrared systems can heat the filters comprehensively and evenly without significantly impairing the cross-sectional flow of the intake air,” says Thomas Kleinwaechter. The power station operators also made the point that the de-icing enhancement system was a turnkey system which was supplied complete. “We were faced with a real challenge,” says Michael Lyhs, project manager at Heraeus Noblelight, “in the end, there was a window of just three weeks for the total electrical and mechanical installation and this work had to be carried out at heights of 11 to 25 metres.”

Altogether, surface areas of 8.8 x 4m were each fitted with 24 medium wave infrared emitters, with a total rated power of 236 kW. Every three of the 2.20m long emitters are mounted in a frame and these modules can be easily switched on and off and controlled by a switchboard or from the main control room. “The co-operation and collaboration between the power station staff and Heraeus worked so well that the system was up and running in just two weeks!” says Michael Lyhs, delightedly, “I am convinced that the de-icing system will meet the challenges of next winter perfectly.”

Heraeus Noblelight

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

Trianel

The liberalised energy market offers public utilities a wide range of opportunities. As the largest European Public Utility Co-operative with 47 members in Germany and the rest of Europe, Trianel has maximised this potential by means of innovative concepts along the total value and supply chain. At the same time, the network of utilities has made possible what would not have been possible for the individual utilities alone – from energy generation in highly efficient power stations through energy trading in our own trading floor up to the development of a broad palette of procurement and marketing solutions.

Trianel also sees future fields of activity for utilities in the areas of re-municipalisation and the use of electric-powered vehicles and is working to develop appropriate solutions with its partners. With its various activities, Trianel represents over 5 million customers.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Trianel Gaskraftwerk Hamm GmbH & Co. KG
Thomas Kleinwächter
Trianelstraße 1
D-59071 Hamm
www.trianel.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>