Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inexpensive material boosts battery capacity

24.10.2013
Next-generation lithium-ion batteries made with iron oxide nanoparticles could extend the driving distance of electric cars

Battery-powered cars offer many environmental benefits, but a car with a full tank of gasoline can travel further. By improving the energy capacity of lithium-ion batteries, a new electrode made from iron oxide nanoparticles could help electric vehicles to cover greater distances.


Electric vehicles could travel further when powered by a higher-capacity lithium-ion battery made with inexpensive iron oxide nanoparticles.
© iStock/Thinkstock

Developed by Zhaolin Liu of the A*STAR Institute of Materials Research and Engineering, Singapore, and Aishui Yu of Fudan University, China, and co-workers, the electrode material is inexpensive, suitable for large-scale manufacturing and can store higher charge densities than the conventional electrodes used in lithium-ion batteries1.

These batteries store and release energy by shuttling lithium ions between two electrodes connected in a circuit. During charging, lithium ions escape from the cathode, which is made from materials such as lithium cobalt oxide. The ions migrate through a liquid electrolyte and into the anode, which is usually made of graphite riddled with tiny pores. When the battery discharges, the process runs in reverse, generating an electrical current between the electrodes.

Iron oxides have a much higher charging capacity than graphite, but the process is slow. Forcing lithium ions into the material also changes its volume, destroying the anode after just a few charging cycles.

Liu, Yu and team reasoned that an anode made from iron oxide nanoparticles would charge more quickly, because its pores would give ready access to lithium ions. The pores may also allow the material’s structure to change as the ions pack inside.

The researchers made 5-nanometer-wide particles of an iron oxide known as á-Fe2O3, simply by heating iron nitrate in water. They mixed the particles with a dust called carbon black, bound them together with polyvinylidene fluoride and coated the mixture onto copper foil to make their anodes.

During the first round of charging and discharging, the anodes showed an efficiency of 75–78%, depending on the current density used. After ten more cycles, however, the efficiency improved to 98%, almost as high as commercial lithium-ion batteries. Research by other teams suggests that during the first few cycles, the iron oxide nanoparticles are broken down until they reach an optimum size.

After 230 cycles the anode’s efficiency remained at 97%, with a capacity of 1,009 milliamp hours per gram (mA h g−1 ) — almost three times greater than commercial graphite anodes. The material experienced none of the degradation problems that have plagued other iron oxide anodes.

The team is now working to optimize the nanoparticle synthesis and increase the efficiency of the anode’s initial charging cycles.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
http://www.research.a-star.edu.sg/research/6803
Journal information
Zhang, J., Huang, T., Liu, Z. & Yu, A. Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochemistry Communications 29, 17–20 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6803
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>