Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inexpensive material boosts battery capacity

24.10.2013
Next-generation lithium-ion batteries made with iron oxide nanoparticles could extend the driving distance of electric cars

Battery-powered cars offer many environmental benefits, but a car with a full tank of gasoline can travel further. By improving the energy capacity of lithium-ion batteries, a new electrode made from iron oxide nanoparticles could help electric vehicles to cover greater distances.


Electric vehicles could travel further when powered by a higher-capacity lithium-ion battery made with inexpensive iron oxide nanoparticles.
© iStock/Thinkstock

Developed by Zhaolin Liu of the A*STAR Institute of Materials Research and Engineering, Singapore, and Aishui Yu of Fudan University, China, and co-workers, the electrode material is inexpensive, suitable for large-scale manufacturing and can store higher charge densities than the conventional electrodes used in lithium-ion batteries1.

These batteries store and release energy by shuttling lithium ions between two electrodes connected in a circuit. During charging, lithium ions escape from the cathode, which is made from materials such as lithium cobalt oxide. The ions migrate through a liquid electrolyte and into the anode, which is usually made of graphite riddled with tiny pores. When the battery discharges, the process runs in reverse, generating an electrical current between the electrodes.

Iron oxides have a much higher charging capacity than graphite, but the process is slow. Forcing lithium ions into the material also changes its volume, destroying the anode after just a few charging cycles.

Liu, Yu and team reasoned that an anode made from iron oxide nanoparticles would charge more quickly, because its pores would give ready access to lithium ions. The pores may also allow the material’s structure to change as the ions pack inside.

The researchers made 5-nanometer-wide particles of an iron oxide known as á-Fe2O3, simply by heating iron nitrate in water. They mixed the particles with a dust called carbon black, bound them together with polyvinylidene fluoride and coated the mixture onto copper foil to make their anodes.

During the first round of charging and discharging, the anodes showed an efficiency of 75–78%, depending on the current density used. After ten more cycles, however, the efficiency improved to 98%, almost as high as commercial lithium-ion batteries. Research by other teams suggests that during the first few cycles, the iron oxide nanoparticles are broken down until they reach an optimum size.

After 230 cycles the anode’s efficiency remained at 97%, with a capacity of 1,009 milliamp hours per gram (mA h g−1 ) — almost three times greater than commercial graphite anodes. The material experienced none of the degradation problems that have plagued other iron oxide anodes.

The team is now working to optimize the nanoparticle synthesis and increase the efficiency of the anode’s initial charging cycles.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
http://www.research.a-star.edu.sg/research/6803
Journal information
Zhang, J., Huang, T., Liu, Z. & Yu, A. Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochemistry Communications 29, 17–20 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6803
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>