Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial Production instead of Rotor Blade Manufactory - Fraunhofer IWES starts new project

15.01.2013
Rotor blades are still made almost completely by hand. In the “BladeMaker“ project, Fraunhofer IWES scientists and industrial and research partners are searching for automation solutions in order to make the manufacture of rotor blades more cost effective, quicker and with a higher quality.

Rotor blades account for about one quarter of the total cost of a wind energy turbine, a fact which results from the high proportion of manual labour involved. Significant cost reductions can be achieved through changing from small series production to large scale industrial production.

For this reason, the main focus of the joint project “BladeMaker“, with a total of 18 partners and coordinated by the Fraunhofer IWES, is the complete manufacturing chain for rotor blade production.

The project’s target is to reduce production costs by well over 10 per cent and for the long term, to set up a “BladeMaker Demo-Centre” which will be a national and international centre for the research and development of rotor blade production. In order to achieve this ambitious target rotor blade design, materials and manufacturing processes will be taken into consideration. Florian Sayer of the Fraunhofer IWES explains:”In international competition rotor blade producers are under great cost pressures which we will tackle with automation.”

The researchers at the Fraunhofer Institute will first of all analyze all of the work procedures and technologies of rotor blade production and assess automation potentials. Then, any promising automated manufacturing processes will be investigated and simulated. Finally, at the end of the five year project demonstrators will be created for the respective process steps and the “BladeMaker Blade” will be designed, optimized for automated production. “The BladeMaker design provides an insight into what can be achieved in automation,” explains Sayer about the project.

The BladeMaker project will run until the end of September 2017. The project is funded with EUR 8 million by the German Federal Ministry for the Environment, Nature Conservation and Reactor Safety.

Background rotor blade production:
The state of the art in rotor blade production is the so called vacuum infusion process. For this purpose, two moulds or blade halves are reinforced with fibre-glass or carbonfibre matting. This work step is undertaken almost completely manually. Then a vacuum is generated and a resin injected bonds the mats. After hardening, the two halves are pieced together to form one blade and then varnished.
Further information:

Tanja Ellinghaus, Press Officer
Tel. +49 511 762-17678
tanja.ellinghaus@iwes.fraunhofer.de

Dipl.-Ing. Florian Sayer, Head of Competence Center Rotor Blade
Tel. +49 471 14290-329
florian.sayer@iwes.fraunhofer.de

EWEA 2013, Vienna, Austria, 4 - 7 February 2013
Visit us at our stand B77.

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de/

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>