Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial Production instead of Rotor Blade Manufactory - Fraunhofer IWES starts new project

15.01.2013
Rotor blades are still made almost completely by hand. In the “BladeMaker“ project, Fraunhofer IWES scientists and industrial and research partners are searching for automation solutions in order to make the manufacture of rotor blades more cost effective, quicker and with a higher quality.

Rotor blades account for about one quarter of the total cost of a wind energy turbine, a fact which results from the high proportion of manual labour involved. Significant cost reductions can be achieved through changing from small series production to large scale industrial production.

For this reason, the main focus of the joint project “BladeMaker“, with a total of 18 partners and coordinated by the Fraunhofer IWES, is the complete manufacturing chain for rotor blade production.

The project’s target is to reduce production costs by well over 10 per cent and for the long term, to set up a “BladeMaker Demo-Centre” which will be a national and international centre for the research and development of rotor blade production. In order to achieve this ambitious target rotor blade design, materials and manufacturing processes will be taken into consideration. Florian Sayer of the Fraunhofer IWES explains:”In international competition rotor blade producers are under great cost pressures which we will tackle with automation.”

The researchers at the Fraunhofer Institute will first of all analyze all of the work procedures and technologies of rotor blade production and assess automation potentials. Then, any promising automated manufacturing processes will be investigated and simulated. Finally, at the end of the five year project demonstrators will be created for the respective process steps and the “BladeMaker Blade” will be designed, optimized for automated production. “The BladeMaker design provides an insight into what can be achieved in automation,” explains Sayer about the project.

The BladeMaker project will run until the end of September 2017. The project is funded with EUR 8 million by the German Federal Ministry for the Environment, Nature Conservation and Reactor Safety.

Background rotor blade production:
The state of the art in rotor blade production is the so called vacuum infusion process. For this purpose, two moulds or blade halves are reinforced with fibre-glass or carbonfibre matting. This work step is undertaken almost completely manually. Then a vacuum is generated and a resin injected bonds the mats. After hardening, the two halves are pieced together to form one blade and then varnished.
Further information:

Tanja Ellinghaus, Press Officer
Tel. +49 511 762-17678
tanja.ellinghaus@iwes.fraunhofer.de

Dipl.-Ing. Florian Sayer, Head of Competence Center Rotor Blade
Tel. +49 471 14290-329
florian.sayer@iwes.fraunhofer.de

EWEA 2013, Vienna, Austria, 4 - 7 February 2013
Visit us at our stand B77.

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de/

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>