Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial Production instead of Rotor Blade Manufactory - Fraunhofer IWES starts new project

15.01.2013
Rotor blades are still made almost completely by hand. In the “BladeMaker“ project, Fraunhofer IWES scientists and industrial and research partners are searching for automation solutions in order to make the manufacture of rotor blades more cost effective, quicker and with a higher quality.

Rotor blades account for about one quarter of the total cost of a wind energy turbine, a fact which results from the high proportion of manual labour involved. Significant cost reductions can be achieved through changing from small series production to large scale industrial production.

For this reason, the main focus of the joint project “BladeMaker“, with a total of 18 partners and coordinated by the Fraunhofer IWES, is the complete manufacturing chain for rotor blade production.

The project’s target is to reduce production costs by well over 10 per cent and for the long term, to set up a “BladeMaker Demo-Centre” which will be a national and international centre for the research and development of rotor blade production. In order to achieve this ambitious target rotor blade design, materials and manufacturing processes will be taken into consideration. Florian Sayer of the Fraunhofer IWES explains:”In international competition rotor blade producers are under great cost pressures which we will tackle with automation.”

The researchers at the Fraunhofer Institute will first of all analyze all of the work procedures and technologies of rotor blade production and assess automation potentials. Then, any promising automated manufacturing processes will be investigated and simulated. Finally, at the end of the five year project demonstrators will be created for the respective process steps and the “BladeMaker Blade” will be designed, optimized for automated production. “The BladeMaker design provides an insight into what can be achieved in automation,” explains Sayer about the project.

The BladeMaker project will run until the end of September 2017. The project is funded with EUR 8 million by the German Federal Ministry for the Environment, Nature Conservation and Reactor Safety.

Background rotor blade production:
The state of the art in rotor blade production is the so called vacuum infusion process. For this purpose, two moulds or blade halves are reinforced with fibre-glass or carbonfibre matting. This work step is undertaken almost completely manually. Then a vacuum is generated and a resin injected bonds the mats. After hardening, the two halves are pieced together to form one blade and then varnished.
Further information:

Tanja Ellinghaus, Press Officer
Tel. +49 511 762-17678
tanja.ellinghaus@iwes.fraunhofer.de

Dipl.-Ing. Florian Sayer, Head of Competence Center Rotor Blade
Tel. +49 471 14290-329
florian.sayer@iwes.fraunhofer.de

EWEA 2013, Vienna, Austria, 4 - 7 February 2013
Visit us at our stand B77.

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>