Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial Production instead of Rotor Blade Manufactory - Fraunhofer IWES starts new project

15.01.2013
Rotor blades are still made almost completely by hand. In the “BladeMaker“ project, Fraunhofer IWES scientists and industrial and research partners are searching for automation solutions in order to make the manufacture of rotor blades more cost effective, quicker and with a higher quality.

Rotor blades account for about one quarter of the total cost of a wind energy turbine, a fact which results from the high proportion of manual labour involved. Significant cost reductions can be achieved through changing from small series production to large scale industrial production.

For this reason, the main focus of the joint project “BladeMaker“, with a total of 18 partners and coordinated by the Fraunhofer IWES, is the complete manufacturing chain for rotor blade production.

The project’s target is to reduce production costs by well over 10 per cent and for the long term, to set up a “BladeMaker Demo-Centre” which will be a national and international centre for the research and development of rotor blade production. In order to achieve this ambitious target rotor blade design, materials and manufacturing processes will be taken into consideration. Florian Sayer of the Fraunhofer IWES explains:”In international competition rotor blade producers are under great cost pressures which we will tackle with automation.”

The researchers at the Fraunhofer Institute will first of all analyze all of the work procedures and technologies of rotor blade production and assess automation potentials. Then, any promising automated manufacturing processes will be investigated and simulated. Finally, at the end of the five year project demonstrators will be created for the respective process steps and the “BladeMaker Blade” will be designed, optimized for automated production. “The BladeMaker design provides an insight into what can be achieved in automation,” explains Sayer about the project.

The BladeMaker project will run until the end of September 2017. The project is funded with EUR 8 million by the German Federal Ministry for the Environment, Nature Conservation and Reactor Safety.

Background rotor blade production:
The state of the art in rotor blade production is the so called vacuum infusion process. For this purpose, two moulds or blade halves are reinforced with fibre-glass or carbonfibre matting. This work step is undertaken almost completely manually. Then a vacuum is generated and a resin injected bonds the mats. After hardening, the two halves are pieced together to form one blade and then varnished.
Further information:

Tanja Ellinghaus, Press Officer
Tel. +49 511 762-17678
tanja.ellinghaus@iwes.fraunhofer.de

Dipl.-Ing. Florian Sayer, Head of Competence Center Rotor Blade
Tel. +49 471 14290-329
florian.sayer@iwes.fraunhofer.de

EWEA 2013, Vienna, Austria, 4 - 7 February 2013
Visit us at our stand B77.

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de/

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>