Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In world first -- UNSW researchers convert sunlight to electricity with over 40 percent efficiency


UNSW Australia's solar researchers have converted over 40% of the sunlight hitting a solar system into electricity, the highest efficiency ever reported.

The record efficiency was achieved in outdoor tests in Sydney, before being independently confirmed by the National Renewable Energy Laboratory (NREL) at their outdoor test facility in the United States.

The work was funded by the Australian Renewable Energy Agency (ARENA) and supported by the Australia-US Institute for Advanced Photovoltaics (AUSIAPV).

"This is the highest efficiency ever reported for sunlight conversion into electricity," UNSW Scientia Professor and Director of the Advanced Centre for Advanced Photovoltaics (ACAP) Professor Martin Green said.

"We used commercial solar cells, but in a new way, so these efficiency improvements are readily accessible to the solar industry," added Dr Mark Keevers, the UNSW solar scientist who managed the project.

The 40% efficiency milestone is the latest in a long line of achievements by UNSW solar researchers spanning four decades. These include the first photovoltaic system to convert sunlight to electricity with over 20% efficiency in 1989, with the new result doubling this performance.

"The new results are based on the use of focused sunlight, and are particularly relevant to photovoltaic power towers being developed in Australia," Professor Green said.

Power towers are being developed by Australian company, RayGen Resources, which provided design and technical support for the high efficiency prototype. Another partner in the research was Spectrolab, a US-based company that provided some of the cells used in the project.

A key part of the prototype's design is the use of a custom optical bandpass filter to capture sunlight that is normally wasted by commercial solar cells on towers and convert it to electricity at a higher efficiency than the solar cells themselves ever could.

Such filters reflect particular wavelengths of light while transmitting others.

ARENA CEO Ivor Frischknecht said the achievement is another world first for Australian research and development and further demonstrates the value of investing in Australia's renewable energy ingenuity.

"We hope to see this home grown innovation take the next steps from prototyping to pilot scale demonstrations. Ultimately, more efficient commercial solar plants will make renewable energy cheaper, increasing its competitiveness."

The 40% efficiency achievement is outlined in a paper expected to be published soon by the Progress in Photovoltaics journal. It will also be presented at the Australian PV Institute's Asia-Pacific Solar Research Conference, which begins at UNSW today (Monday 8 December).

About UNSW Scientia Professor Martin Green:

Known as the 'Father of photovoltaics', Martin Green is a Scientia Professor at UNSW and Director of the Australian National Energy Agency-supported Centre for Advanced Photovoltaics. He was formerly a Director of CSG Solar, a company formed specifically to commercialise the University's thin-film, polycrystalline-silicon-on-glass solar cell. His group's contributions to photovoltaics are well known including the development of the world's highest efficiency silicon solar cells and the successes of several spin-off companies.

He is the author of six books on solar cells and numerous papers in the area of semiconductors, microelectronics, optoelectronics and, of course, solar cells. International awards include the 1999 Australia Prize, the 2002 Right Livelihood Award (also known as the Alternative Nobel Prize), the 2004 World Technology Award for Energy and the 2007 SolarWorld Einstein Award. He was elected into the prestigious Fellowship of the Royal Society in 2013.

Ry Crozier | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>