Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving LED lighting

21.06.2011
Researcher from the University of Miami helps create a smaller, flexible LED

University of Miami professor at the College of Engineering, Jizhou Song, has helped design an light-emitting diode (LED) light that uses an array of LEDs 100 times smaller than conventional LEDs. The new device has flexibility, maintains lower temperature and has an increased life-span over existing LEDs. The findings are published online by the "Proceedings of the National Academy of Sciences."

Incandescent bulbs are not very efficient, most of the power they use is converted into heat and only a small fraction of the power gets converted to light. Since LEDs reduce energy waste and present an alternative to conventional bulbs.

In this study, the scientists focused on improving certain features of LED lights, like size, flexibility and temperature. Song's role in the project was to analyze the thermal management and establish an analytical model that reduces the temperature of the device.

"The new model uses a silicon substrate, novel etching strategies, a unique layout and innovative thermal management method," says Song, co-author of the study. "The combination of these manufacturing techniques allows the new design to be much smaller and keep lower temperatures than current LEDs using the same electrical power."

In the future, the researchers would also like to make the device stretchable, so that it can be used on any surface, such as deformable display monitors and biomedical devices that adapt to the curvilinear surfaces of the human body.

The study is titled Unusual Strategies for Using InGaN Grown on Silicon (111) for Solid State Lighting. The corresponding author is John Rogers, the Lee J. Flory Founder Chair in Engineering and professor of Materials Science and Engineering at the University of Illinois at Urbana-Champaign (UIUC). Other senior authors include Ralph Nuzzo, G. L. Clark professor of Chemistry at UIUC, and Yonggang Huang, Joseph Cummings professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern University.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. www.miami.edu

Catharine Skipp | EurekAlert!
Further information:
http://www.miami.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>