Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improvements in fuel cell design

07.10.2014

Fuel cells could possibly replace the batteries of mobile phones and laptop computers, and the UPV/EHU-University of the Basque Country is looking at ways of enhancing their efficiency

Researchers in the renewable energy sector are working hard in this respect. In this context, researchers in the UPV/EHU's Department of Applied Chemistry are exploring possible solutions to improve the efficiency of mobile devices like, for example, mobile phones, laptop computers and vehicles. In other words, they are designing new ways of obtaining energy in a cleaner, safer and more affordable way.

Fuel cells are totally appropriate systems for substituting the batteries of mobile phones, laptop computers and vehicles. They turn the energy resulting from the combining of hydrogen and oxygen into electrical power, with water vapour being the only waste product. In other words, they generate energy in the same way that batteries do, but they do not contaminate.

However, if these fuel cells are to produce energy, they need an external supply of hydrogen, and right now storing hydrogen safely poses difficulties.  That is why what could be a good option is to use a piece of infrastructure that produces gaseous hydrogen inside the cell itself.

In these cases methanol is normally used as the raw material. And methanol is in fact one of the most important fuels used to produce hydrogen. For example, instead of powering mobile phones, laptop computers and vehicles with hydrogen, methanol can be added to them so that the methanol is turned into hydrogen depending on the needs of the device. In the end, the process is the same even though it takes place in two phases.

A special piece of infrastructure has been designed in the course of this research work: a reactor comprising micro-channels. And a micro-reactor a hundred times smaller than a conventional reactor system has been developed. And the size of the reactor is in fact crucial in the case of all these mobile devices.

"It is no easy task developing a reactor comprising micro-channels," explained Oihane Sanz, a researcher at the UPV/EHU's Department of Applied Chemistry. "The choice of materials, the machining of the micro-channels, the assembly of the system and the catalytic coating, among other things, have to be carried out with the utmost care."

They have seen that these reactors comprising micro-channels contribute towards improving the heat transfer to convert the methanol into hydrogen. Thanks to this, the reaction temperature is properly controlled and, therefore, the hot spots in which the carbon monoxide (CO) arises are minimized. If CO is produced together with the hydrogen, the fuel cell can in fact become contaminated. As a result of this contamination, the cell will not function properly and, therefore, the production of energy is halted.

A stable catalyst
Likewise, choosing a catalyst and using a suitable method of depositing it are indispensable conditions for the reaction to take place as efficiently as possible. "One of the biggest difficulties of these reactors made up of micro-channels is inserting the catalyst into these channels that are so small. That is why the aim of this research has been to design a stable catalyst and insert it into the system in the best way possible. In the processes to obtain hydrogen from methanol, palladium (Pd) catalysts are used, and this is precisely what the researchers have done in this case.  Specifically, they used PdZnO. Often, "when incorporating the catalysts into reactors made up of micro-channels, the characteristics of the catalysts are lost. However, with the catalysts used in this study, we have managed not only to maintain their characteristics but also carry out the process easily".

With the right infrastructure and catalyst, the micro-reactor designed by the UPV/EHU researchers produces 30 LH2/h.g; the conversion of methanol is 95%, and that of carbon monoxide (CO) less than 1%.  "It is very important to control the production of carbon monoxide as it could contaminate the fuel cell," stressed Sanz. "Systems that produce a bigger quantity of hydrogen (12-50 LH2/h.g) have been documented, but the conversion of the methanol is lower (80 %, and, in some cases, 4 %), and, what is more, marginal products are generated," added Sanz. In the end, this design "enables us to develop a cleaner, safer and less costly process," concluded Sanz.

Additional information
The research was conducted by the Department of Applied Chemistry of the UPV/EHU's Donostia-San Sebastian Faculty led by Prof Mario Montes. Also collaborating were the group led by Prof José Antonio Odriozola of the University of Seville (ICMS-University of Seville Institute of Materials Sciences, US-CSIC-Spanish National Research Council Mixed Centre) and the group led by Profs Gurutze Arzamendi and Luis M. Gandia of the NUP/UPNA-Public University of Navarre.

Bibliographical reference
F.J. Echave, O. Sanz, M. Montes. "Washcoating of micro-channel reactors with PdZnO catalyst for methanol steam reforming" Applied Catalysis A: General: 159 -167 2014.

Matxalen Sotillo | Eurek Alert!
Further information:
http://www.ehu.es/

More articles from Power and Electrical Engineering:

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>