Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improvements in fuel cell design

07.10.2014

Fuel cells could possibly replace the batteries of mobile phones and laptop computers, and the UPV/EHU-University of the Basque Country is looking at ways of enhancing their efficiency

Researchers in the renewable energy sector are working hard in this respect. In this context, researchers in the UPV/EHU's Department of Applied Chemistry are exploring possible solutions to improve the efficiency of mobile devices like, for example, mobile phones, laptop computers and vehicles. In other words, they are designing new ways of obtaining energy in a cleaner, safer and more affordable way.

Fuel cells are totally appropriate systems for substituting the batteries of mobile phones, laptop computers and vehicles. They turn the energy resulting from the combining of hydrogen and oxygen into electrical power, with water vapour being the only waste product. In other words, they generate energy in the same way that batteries do, but they do not contaminate.

However, if these fuel cells are to produce energy, they need an external supply of hydrogen, and right now storing hydrogen safely poses difficulties.  That is why what could be a good option is to use a piece of infrastructure that produces gaseous hydrogen inside the cell itself.

In these cases methanol is normally used as the raw material. And methanol is in fact one of the most important fuels used to produce hydrogen. For example, instead of powering mobile phones, laptop computers and vehicles with hydrogen, methanol can be added to them so that the methanol is turned into hydrogen depending on the needs of the device. In the end, the process is the same even though it takes place in two phases.

A special piece of infrastructure has been designed in the course of this research work: a reactor comprising micro-channels. And a micro-reactor a hundred times smaller than a conventional reactor system has been developed. And the size of the reactor is in fact crucial in the case of all these mobile devices.

"It is no easy task developing a reactor comprising micro-channels," explained Oihane Sanz, a researcher at the UPV/EHU's Department of Applied Chemistry. "The choice of materials, the machining of the micro-channels, the assembly of the system and the catalytic coating, among other things, have to be carried out with the utmost care."

They have seen that these reactors comprising micro-channels contribute towards improving the heat transfer to convert the methanol into hydrogen. Thanks to this, the reaction temperature is properly controlled and, therefore, the hot spots in which the carbon monoxide (CO) arises are minimized. If CO is produced together with the hydrogen, the fuel cell can in fact become contaminated. As a result of this contamination, the cell will not function properly and, therefore, the production of energy is halted.

A stable catalyst
Likewise, choosing a catalyst and using a suitable method of depositing it are indispensable conditions for the reaction to take place as efficiently as possible. "One of the biggest difficulties of these reactors made up of micro-channels is inserting the catalyst into these channels that are so small. That is why the aim of this research has been to design a stable catalyst and insert it into the system in the best way possible. In the processes to obtain hydrogen from methanol, palladium (Pd) catalysts are used, and this is precisely what the researchers have done in this case.  Specifically, they used PdZnO. Often, "when incorporating the catalysts into reactors made up of micro-channels, the characteristics of the catalysts are lost. However, with the catalysts used in this study, we have managed not only to maintain their characteristics but also carry out the process easily".

With the right infrastructure and catalyst, the micro-reactor designed by the UPV/EHU researchers produces 30 LH2/h.g; the conversion of methanol is 95%, and that of carbon monoxide (CO) less than 1%.  "It is very important to control the production of carbon monoxide as it could contaminate the fuel cell," stressed Sanz. "Systems that produce a bigger quantity of hydrogen (12-50 LH2/h.g) have been documented, but the conversion of the methanol is lower (80 %, and, in some cases, 4 %), and, what is more, marginal products are generated," added Sanz. In the end, this design "enables us to develop a cleaner, safer and less costly process," concluded Sanz.

Additional information
The research was conducted by the Department of Applied Chemistry of the UPV/EHU's Donostia-San Sebastian Faculty led by Prof Mario Montes. Also collaborating were the group led by Prof José Antonio Odriozola of the University of Seville (ICMS-University of Seville Institute of Materials Sciences, US-CSIC-Spanish National Research Council Mixed Centre) and the group led by Profs Gurutze Arzamendi and Luis M. Gandia of the NUP/UPNA-Public University of Navarre.

Bibliographical reference
F.J. Echave, O. Sanz, M. Montes. "Washcoating of micro-channel reactors with PdZnO catalyst for methanol steam reforming" Applied Catalysis A: General: 159 -167 2014.

Matxalen Sotillo | Eurek Alert!
Further information:
http://www.ehu.es/

More articles from Power and Electrical Engineering:

nachricht Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Silicon as a new storage material for the batteries of the future
25.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>