Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved quality control of SiC epiwafers by a new fast and contactless inline inspection tool

30.06.2014

A new fast and contactless Defect Luminescence Scanner (DLS) for photoluminescence imaging of 4H-SiC epiwafers was developed under coordination of Fraunhofer IISB together with Intego GmbH.

This DLS system enables a more efficient optimization of the production process of SiC epiwafers as well as an inline quality control along the device production chain. This will contribute to cost reduction in material and device production, and helps accelerating the further commercialization of SiC power devices.


Operator loading a 100 mm SiC epiwafer in the defect luminescence scanner at Fraunhofer IISB.

Fraunhofer IISB


Example for spectral fingerprints of defects in 4H-SiC epiwafers: “panchromatic” image with full spectral range, band-pass filter in blue, green, red ranges (images from left to right, respectively)

Intego GmbH / Fraunhofer IISB

With respect to structural defects, such as micropipes or other dislocation types, and their densities in substrates and epilayers, the material quality of silicon carbide (4H-SiC) has been improved greatly within the last years.

But still, the performance of especially SiC bipolar devices and the yield of device production may be limited by residual structural defects in the epiwafers. Such defects originate in the substrate material or are generated during the epitaxial process like, e.g. down-fall particles, stacking faults, and dislocations.

To date, several characterization methods are well established for identification and distribution of such defects on the wafer level, but they are destructive (defect selective etching), cost-intensive (synchrotron x-ray topography), or time-consuming (both defect selective etching and x-ray topography).

Hence, they are not suitable for a fast inline quality control of the material preparation and device production. As a non-destructive, contactless method allowing for identification of structural defects of 4H-SiC at room temperature, the photoluminescence (PL) technique is well known. In PL images, structural defects appear either as bright or dark items on the “grey” SiC background as 4H-SiC itself shows a low PL intensity due to its indirect band gap.

However, so far no PL setup exists which is fast enough for an inline defect analysis on full waferscale within a production environment. This obstacle has now been overcome in the course of the “SiC-WinS” project, funded by the Bavarian Research Foundation (BFS) under contract number AZ-1028-12.

Together with the metrology specialist Intego Vision Systeme GmbH, the new PL imaging tool called defect luminescence scanner (DLS) was designed and fabricated under coordination of Fraunhofer IISB. The DLS allows for short PL measurement cycles and high throughput of SiC epiwafers at a high lateral resolution of 5 µm.

The DLS system is installed at Fraunhofer IISB and consists of a UV laser operating at 325 nm wavelength for PL excitation, a sample stage for scanning the SiC epiwafer, and an electron multiplying charge-coupled device (EMCCD) camera for fast image recording at a high signal-to-noise ratio. The high lateral resolution of 5 µm is achieved by a magnifying objective lens in front of the camera.

For identification of defect types by their spectral fingerprints, different band-pass filters are installed. The DLS system can determine the defect types and their distribution on SiC epiwafers up to 150 mm diameter in less than 30 minutes. A routine for automated defect identification and counting in order to predict directly the device yield per epiwafer is currently under development.

Fraunhofer IISB performs service measurements with the new DLS system and identifies the defects and their distribution on SiC epiwafers on the full waferscale for epi houses and device manufacturers.

Contact:

Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

Custom-tailored SiC Services at Fraunhofer IISB:

Fraunhofer IISB offers R&D services in SiC from materials development and prototype devices to module assembly and mechatronic systems. Based on our toolbox, customers can utilize the services in order to perform, e.g., design studies, feasibility tests, proofs of concept, or prototype fabrication. Fraunhofer IISB offers competent partnership for contract research and development in bilateral cooperation with industry as well as in public-funded projects.

Please visit our homepage http://www.iisb.fraunhofer.de/sic or contact us by email (sic@iisb.fraunhofer.de).

Fraunhofer IISB in Profile:

The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of the 67 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of power electronics, mechatronics, micro and nanoelectronics. A staff of 200 works in contract research for industry and public authorities.

The institute is internationally acknowledged for its work on power electronic systems for energy effi-ciency, hybrid and electric cars and the development of technology, equipment, and materials for nanoelectronics.

In addition to its headquarters in Erlangen, the IISB has branch labs in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Weitere Informationen:

http://www.iisb.fraunhofer.de Homepage IISB
http://www.iisb.fraunhofer.de/sic SiC Services at Fraunhofer IISB

Dr. Jochen Friedrich | Fraunhofer-Institut

Further reports about: 4H-SiC DLS IISB Technology defects nanoelectronics topography

More articles from Power and Electrical Engineering:

nachricht Energy from Sunlight: Further Steps towards Artificial Photosynthesis
24.06.2016 | Universität Basel

nachricht World's first 1,000-processor chip
20.06.2016 | University of California - Davis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Four newly-identified genes could improve rice

27.06.2016 | Agricultural and Forestry Science

Scientists begin modeling universe with Einstein's full theory of general relativity

27.06.2016 | Physics and Astronomy

Newly-discovered signal in the cell sets protein pathways to mitochondria

27.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>