Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important breakthrough for renewable energy sources

12.04.2012
Researchers from the Department of Chemistry at the Royal Institute of Technology (KTH) in Stockholm, Sweden, have managed to construct a molecular catalyzer that can oxidize water to oxygen very rapidly.
In fact, these KTH scientists are the first to reach speeds similar to those is nature’s own photosynthesis, which is also a world record. The research findings play a critical role for the future use of solar energy and other renewable energy sources, which is of great interest as gasoline prices are constantly setting new records.

Researchers all over the world, including the US, Japan, and the EU, have been focusing for more than 30 years on refining an artificial form of photosynthesis. The results have varied, but above all researchers have not succeeded in creating a sufficiently rapid solar-driven catalyzer for oxidizing water.

– Speed has been the main problem, the bottleneck, when it comes to creating perfect artificial photosynthesis, says Licheng Sun, professor of organic chemistry at KTH.

But now, together with research colleagues, he has imitated natural photosynthesis and thereby succeeded in creating a molecular catalyzer that is record fast. The speed with which natural photosynthesis does its job is given as 100 to 400 turnovers per seconds. The KTH have reached over 300 turnovers per seconds with their artificial photosynthesis.

– This is clearly a world record, and a breakthrough regarding a molecular catalyzer in artificial photosynthesis, says Licheng Sun.

The fact that the KTH researchers are now close to nature’s own photosynthesis regarding speed opens up many new possibilities, especially for renewable energy sources.

– This speed makes it possible in the future to create large-scale facilities for producing hydrogen in the Sahara, where there’s an abundance of sunshine. Or to attain much more efficient solar energy conversion to electricity, combining this with traditional solar cells, than is possible today, says Licheng Sun.

He points to the problem of skyrocketing gasoline prices, and these advances with the rapid molecular catalyzers can in turn lay the groundwork for many important changes. On the one hand, they make it possible to use sunlight to convert carbon dioxide into various fuels, such as methanol. On the other hand, the technology can be created to convert solar energy directly into hydrogen. Licheng Sun adds that he and his research colleagues are working hard and pursing intensive research to make this technology inexpensive.

– I’m convinced that it will be possible in ten years to produce technology based on this type of research that is sufficiently cheap to compete with carbon-based fuels. This explains why Barack Obama is investing billions of dollars in this type of research, says Licheng Sun.

He has conducted research in this field for nearly twenty years, more than half of that time at KTH, and adds that he and many other researchers see efficient catalyzers for oxidation of water as key to solving the solar energy problem.

– When it comes to renewable energy sources, using the sun is one of the best ways to go, says Licheng Sun.

The research findings are of such importance that they have recently attracted the attention of the scientific journal Nature Chemistry.

The research pursued by Licheng Sun and his colleagues is funded by the Wallenberg Foundation and the Swedish Energy Agency. They collaborate with researchers at Uppsala University and Stockholm University, and, together with Professor Lars Kloo at KTH, they run a joint research center involving KTH and Dalian University of Technology (DUT) in China.

For more information, please contact Licheng Sun via lichengs@kth.se or +46 (0)8 - 790 81 27. Please note that Professor Licheng Sun will be attending various conferences around the world for the next few weeks, which means it is easiest to reach him by e-mail.

Peter Larsson | idw
Further information:
http://www.vr.se

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>