Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important breakthrough for renewable energy sources

12.04.2012
Researchers from the Department of Chemistry at the Royal Institute of Technology (KTH) in Stockholm, Sweden, have managed to construct a molecular catalyzer that can oxidize water to oxygen very rapidly.
In fact, these KTH scientists are the first to reach speeds similar to those is nature’s own photosynthesis, which is also a world record. The research findings play a critical role for the future use of solar energy and other renewable energy sources, which is of great interest as gasoline prices are constantly setting new records.

Researchers all over the world, including the US, Japan, and the EU, have been focusing for more than 30 years on refining an artificial form of photosynthesis. The results have varied, but above all researchers have not succeeded in creating a sufficiently rapid solar-driven catalyzer for oxidizing water.

– Speed has been the main problem, the bottleneck, when it comes to creating perfect artificial photosynthesis, says Licheng Sun, professor of organic chemistry at KTH.

But now, together with research colleagues, he has imitated natural photosynthesis and thereby succeeded in creating a molecular catalyzer that is record fast. The speed with which natural photosynthesis does its job is given as 100 to 400 turnovers per seconds. The KTH have reached over 300 turnovers per seconds with their artificial photosynthesis.

– This is clearly a world record, and a breakthrough regarding a molecular catalyzer in artificial photosynthesis, says Licheng Sun.

The fact that the KTH researchers are now close to nature’s own photosynthesis regarding speed opens up many new possibilities, especially for renewable energy sources.

– This speed makes it possible in the future to create large-scale facilities for producing hydrogen in the Sahara, where there’s an abundance of sunshine. Or to attain much more efficient solar energy conversion to electricity, combining this with traditional solar cells, than is possible today, says Licheng Sun.

He points to the problem of skyrocketing gasoline prices, and these advances with the rapid molecular catalyzers can in turn lay the groundwork for many important changes. On the one hand, they make it possible to use sunlight to convert carbon dioxide into various fuels, such as methanol. On the other hand, the technology can be created to convert solar energy directly into hydrogen. Licheng Sun adds that he and his research colleagues are working hard and pursing intensive research to make this technology inexpensive.

– I’m convinced that it will be possible in ten years to produce technology based on this type of research that is sufficiently cheap to compete with carbon-based fuels. This explains why Barack Obama is investing billions of dollars in this type of research, says Licheng Sun.

He has conducted research in this field for nearly twenty years, more than half of that time at KTH, and adds that he and many other researchers see efficient catalyzers for oxidation of water as key to solving the solar energy problem.

– When it comes to renewable energy sources, using the sun is one of the best ways to go, says Licheng Sun.

The research findings are of such importance that they have recently attracted the attention of the scientific journal Nature Chemistry.

The research pursued by Licheng Sun and his colleagues is funded by the Wallenberg Foundation and the Swedish Energy Agency. They collaborate with researchers at Uppsala University and Stockholm University, and, together with Professor Lars Kloo at KTH, they run a joint research center involving KTH and Dalian University of Technology (DUT) in China.

For more information, please contact Licheng Sun via lichengs@kth.se or +46 (0)8 - 790 81 27. Please note that Professor Licheng Sun will be attending various conferences around the world for the next few weeks, which means it is easiest to reach him by e-mail.

Peter Larsson | idw
Further information:
http://www.vr.se

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>